Laser-based assembler and microfluidic applications

Microfluidic chips enable complete laboratory analysis and diagnostics from smallest volumes of liquids on dimensions not exceeding a matchbox. In the process, these systems are based on integration and miniaturization of pumps, mixers, and devices to control the fluid flow. Light plays an important role for manufacturing and actuation of these microdevices and can be applied for further improving microsystems with regard to new capabilities and higher performance density. In the following paragraphs, an introduction to microfluidics, optofluidics, and assembling techniques is given.

[1]  Holger Becker,et al.  Polymer microfabrication technologies for microfluidic systems , 2008, Analytical and bioanalytical chemistry.

[2]  Andreas Ostendorf,et al.  Influence of multiple particles in optical tweezers on the trapping efficiency , 2014, Photonics West - Optoelectronic Materials and Devices.

[3]  Arnost Reiser,et al.  Photoreactive Polymers: The Science and Technology of Resists , 1989 .

[4]  Andreas Ostendorf,et al.  Optical screw-wrench for microassembly , 2017, Microsystems & Nanoengineering.

[5]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[6]  J. Burns,et al.  Single-molecule mechanics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers. , 1995, Biophysical journal.

[7]  J. Fouassier,et al.  Radiation curing in polymer science and technology , 1993 .

[8]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[9]  Metin Sitti,et al.  Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly , 2005, Robotica.

[10]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[11]  Min Gu,et al.  Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization. , 2002, Optics letters.

[12]  Yong-Gu Lee,et al.  Traceable assembly of microparts using optical tweezers , 2012 .

[13]  G. Kim,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy , 2013 .

[14]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[15]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[16]  C. Schaerf,et al.  Pion Photoproduction at Backward Angles Near the Second Nucleon-Pion Resonance , 1961 .

[17]  In-Yong Park,et al.  Manufacturing micro-scale structures by an optical tweezers system controlled by five finger tips , 2007 .

[18]  G J Brakenhoff,et al.  Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. , 1993, Cytometry.

[19]  Shoji Maruo,et al.  Recent progress in multiphoton microfabrication , 2008 .

[20]  B. Chichkov,et al.  Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine , 2007 .

[21]  Martin Wegener,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited] , 2011, 1105.5703.

[22]  J. Spudich,et al.  In vitro methods for measuring force and velocity of the actin-myosin interaction using purified proteins. , 1993, Methods in cell biology.

[23]  G. Odian,et al.  Principles of polymerization , 1981 .

[24]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[25]  Mario Surbek,et al.  Optically based Manufacturing with Polymer Particles , 2010 .

[26]  Yong-Gu Lee,et al.  Construction and actuation of a microscopic gear assembly formed using optical tweezers , 2013 .

[27]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .

[28]  Patrice L. Baldeck,et al.  Laser direct writing 3D structures for microfluidic channels: flow meter and mixer , 2015, Photonics West - Biomedical Optics.

[29]  Miles Padgett,et al.  Holographic optical tweezers and their relevance to lab on chip devices. , 2011, Lab on a chip.

[30]  M. Tur,et al.  Sequence dependence of phase-induced intensity noise in optical networks that employ direct modulation. , 1995, Optics letters.

[31]  Aleksandr Ovsianikov,et al.  Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. , 2004, Optics express.

[32]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[33]  Wen-Fei Dong,et al.  Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. , 2013, Lab on a chip.

[34]  Vincent Germain,et al.  Automated trapping, assembly, and sorting with holographic optical tweezers. , 2006, Optics express.

[35]  Jean-Pierre Fouassier,et al.  Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications , 1995 .

[36]  A. Stein,et al.  Controllable pulse compression in a multiple-pass-cell Raman laser. , 1980, Optics letters.

[37]  Parallel two-photon photopolymerization of microgear patterns , 2009 .

[38]  Pier Luca Maffettone,et al.  Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance' , 2015, Scientific Reports.

[39]  Nana Rezai Taking the Confusion out of Confocal Microscopy , 2003 .

[40]  Andreas Ostendorf,et al.  Optical screw-wrench for interlocking 2PP-microstructures , 2016, SPIE OPTO.

[41]  J. Cooper,et al.  3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers. , 2008, Analytical chemistry.

[42]  D. Grier A revolution in optical manipulation , 2003, Nature.

[43]  Yan Li,et al.  Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum , 2014 .

[44]  John T. Fourkas,et al.  Simultaneous microscale optical manipulation, fabrication and immobilisation in aqueous media , 2012 .

[45]  Boris N. Chichkov,et al.  Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization , 2012 .

[46]  Stephen Barlow,et al.  65 nm feature sizes using visible wavelength 3-D multiphoton lithography. , 2007, Optics express.

[47]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[48]  Reza Ghadiri,et al.  Microassembly of complex and three-dimensional microstructures using holographic optical tweezers , 2012 .

[49]  Chantal Andraud,et al.  Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser. , 2002, Optics letters.

[50]  Satoshi Kawata,et al.  Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting , 2005 .

[51]  J. Glückstad,et al.  2D optical manipulation and assembly of shape-complementary planar microstructures. , 2007, Optics express.

[52]  J. Cooper,et al.  Multipoint holographic optical velocimetry in microfluidic systems. , 2006 .

[53]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[54]  Andreas Ostendorf,et al.  Optical tweezers as manufacturing and characterization tool in microfluidics , 2014, Optics & Photonics - NanoScience + Engineering.

[55]  Koji Ikuta,et al.  New micro stereo lithography for freely movable 3D micro structure-super IH process with submicron resolution , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[56]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[57]  Hiroshi Masuhara,et al.  Multibeam laser manipulation and fixation of microparticles , 1992 .

[58]  D A Parthenopoulos,et al.  Three-Dimensional Optical Storage Memory , 1989, Science.

[59]  A Ostendorf,et al.  Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number. , 2015, Physical review. E.

[60]  Claire Wilhelm,et al.  Local control of magnetic objects in microfluidic channels , 2009 .

[61]  Min Gu,et al.  Acrylate‐Based Photopolymer for Two‐Photon Microfabrication and Photonic Applications , 2005 .

[62]  Edward Hæggström,et al.  Stiffer Optical Tweezers through Real-Time Feedback Control , 2008 .

[63]  Dong-Yol Yang,et al.  Rotational elastic micro joint based on helix-augmented cross-spring design for large angular movement. , 2014, Optics express.

[64]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[65]  Hiroshi Masuhara,et al.  Photothermal fixation of laser-trapped polymer microparticles on polymer substrates , 1999 .

[66]  Sabato Fusco,et al.  Viscosity measurements on micron-size scale using optical tweezers , 2005 .

[67]  Pál Ormos,et al.  Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies. , 2009, Optics express.

[68]  Satoshi Kawata,et al.  Two-photon photopolymerization and 3D lithographic microfabrication , 2005 .

[69]  R. Nabiev,et al.  Coherent amplification of ultrashort solitons in doped fibers. , 1990, Optics letters.

[70]  Yan Li,et al.  Reduction in feature size of two-photon polymerization using SCR500 , 2007 .

[71]  Kasra Daneshvar,et al.  Laser rapid prototyping in nonlinear medium , 2000 .

[72]  D. Baigl,et al.  Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. , 2012, Lab on a chip.

[73]  Saulius Juodkazis,et al.  Two-photon lithography of nanorods in SU-8 photoresist , 2005 .

[74]  C. Garrett,et al.  Two-photon excitation in CaF2:Eu2+ , 2003 .

[75]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[76]  Andreas Ostendorf,et al.  Microfabrication by optical tweezers , 2011, LASE.

[77]  Samarendra Mohanty,et al.  Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization. , 2012, Lab on a chip.

[78]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[79]  B N Chichkov,et al.  Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. , 2003, Optics letters.

[80]  H. Rubinsztein-Dunlop,et al.  Characterization of optically driven fluid stress fields with optical tweezers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Satoshi Kawata,et al.  Rupture force measurement of biotin-streptavidin bonds using optical trapping , 2005 .

[82]  Katsuo Kurabayashi,et al.  Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. , 2014, Lab on a chip.

[83]  E. Diamandis,et al.  The biotin-(strept)avidin system: principles and applications in biotechnology. , 1991, Clinical chemistry.

[84]  Andreas Tünnermann,et al.  Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization , 2012 .

[85]  David W. M. Marr,et al.  Fabrication of linear colloidal structures for microfluidic applications , 2002 .

[86]  V. S. R. Jampani,et al.  Stabilisation of 2D colloidal assemblies by polymerisation of liquid crystalline matrices for photonic applications. , 2014, Soft matter.

[87]  Theodore S. Drakakis,et al.  Construction of three-dimensional biomolecule structures employing femtosecond lasers , 2006 .

[88]  Boris N. Chichkov,et al.  Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites , 2014 .

[89]  Reza Ghadiri,et al.  Generation of microfluidic flow using an optically assembled and magnetically driven microrotor , 2014 .

[90]  Gerard Mourou,et al.  Optics at critical intensity: applications to nanomorphing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Yael Roichman,et al.  Holographic assembly of quasicrystalline photonic heterostructures. , 2005, Optics express.

[92]  Koji Sugioka,et al.  The Femtoprint project , 2012 .

[93]  Hong Xia,et al.  Ferrofluids for Fabrication of Remotely Controllable Micro‐Nanomachines by Two‐Photon Polymerization , 2010, Advanced materials.

[94]  B. Chichkov,et al.  Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator , 2011, Biomedical optics express.

[95]  Joseph W. Perry,et al.  Two-photon absorption: an overview of measurements and principles , 2010 .

[96]  Pál Ormos,et al.  Two-photon polymerization with optimized spatial light modulator , 2011 .

[97]  Shi Yu-sheng,et al.  Microstructure of selective laser sintered polyamide , 2003 .

[98]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[99]  Fumihito Arai,et al.  Synchronized laser micromanipulation of microtools for assembly of microbeads and indirect manipulation of microbe , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[100]  Hiroshi Masuhara,et al.  Laser manipulation and assembling of polymer latex particles in solution , 1993 .