Machining stability in high speed drilling—Part 2: Time domain simulation of a bending–torsional model and experimental validations

Abstract In this paper, the torsional limits of stability in drilling are first obtained analytically based on Bayly's work [P.V. Bayly, S.A. Metzler, A.J. Schaut, K.A. Young, Theory of torsional chatter in twist drills: model, stability analysis and composition to test, Journal of Manufacturing Science and Engineering, 123 (2001) 552–561]. Subsequently, a time domain simulation model of chatter in drilling is presented. The novel simulation model, developed in this work, combines the effects of both bending and torsion. The major challenge in this model is the tracking of the instantaneous cutting parameters along the lips while vibrating in both modes. This challenge was met here successfully and the simulation results agreed closely with the analytical solutions. Cutting experiments were also conducted to verify the developed chatter models. Two drills, one “short” and one “long” were used in drilling a large number of holes with different pilot-hole diameters. The agreement between the cutting tests and theoretical predictions was not very close for the “short” drill due to inaccuracies in representing the boundary conditions in the mathematical model. On the other hand, the cuttings tests agreed very closely with the analytical and numerical predictions for the “long” drill.