The putative mechanical Strength of comet surface material applied to landing on a comet

[1]  Aleksandar S. Vesic,et al.  Analysis of Ultimate Loads of Shallow Foundations , 1973 .

[2]  V. F. Petrenko,et al.  Physics of Ice , 1999 .

[3]  Compressive strength of synthetic comet nucleus samples , 1989 .

[4]  E. Kührt,et al.  The Formation of Cometary Surface Crusts , 1994 .

[5]  J. Mayo Greenberg,et al.  A new derivation of the tensile strength of cometary nuclei: Application to comet Shoemaker-Levy 9 , 1995 .

[6]  Erik Asphaug,et al.  Structure of Comet Shoemaker-Levy 9 Inferred from the Physics of Tidal Breakup , 1996 .

[7]  H. Keller,et al.  Physical risks of landing on a cometary nucleus , 1997 .

[8]  J. Mayo Greenberg,et al.  Do Cometesimal Collisions Lead to Bound Rubble Piles or to Aggregates Held Together by Gravity , 2000 .

[9]  B. Davidsson,et al.  Tidal Splitting and Rotational Breakup of Solid Biaxial Ellipsoids , 2001 .

[10]  Jens Biele,et al.  The Experiments Onboard the Rosetta Lander , 2002 .

[11]  Stephan Ulamec,et al.  Rosetta Lander: Exploring a Comet's Surface , 2002 .

[12]  S. Ulamec,et al.  Rosetta lander: implications of an alternative mission , 2003 .

[13]  J. Petrovic Review Mechanical properties of ice and snow , 2003 .

[14]  D. Brownlee,et al.  Surface of Young Jupiter Family Comet 81P/Wild 2: View from the Stardust Spacecraft , 2004, Science.

[15]  Pedro J. Gutierrez,et al.  Nucleus properties of Comet 67P/Churyumov-Gerasimenko estimated from non-gravitational force modeling , 2005 .

[16]  Thomas J. Ahrens,et al.  Dynamic tensile strength of terrestrial rocks and application to impact cratering , 2004 .

[17]  B. Chares,et al.  First contact with a comet surface: Rosetta lander simulations , 2004 .

[18]  L. Colangeli,et al.  The New Rosetta Targets , 2004 .

[19]  S. Sirono Conditions for collisional growth of a grain aggregate , 2004 .

[20]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[21]  Yongfu Xu Explanation of scaling phenomenon based on fractal fragmentation , 2005 .

[22]  Jordi Llorca,et al.  The strength of cometary meteoroids: clues to the structure and evolution of comets , 2006 .

[23]  K. Holsapple,et al.  Tidal disturbances of small cohesionless bodies: limits on planetary close approach distances , 2006, Proceedings of the International Astronomical Union.

[24]  Low-velocity Impacts on Cometary Surfaces - The Case of Philae , 2006 .

[25]  J. Blum,et al.  The Physics of Protoplanetesimal Dust Agglomerates. I. Mechanical Properties and Relations to Primitive Bodies in the Solar System , 2006 .

[26]  K. A. Holsapple,et al.  Tidal disruptions: A continuum theory for solid bodies , 2006 .

[27]  Gravity or Strength? An Interpretation of the Deep Impact Experiment , 2006 .

[28]  Stephan Ulamec,et al.  Rosetta lander - Philae: Implications of an alternative mission , 2006 .

[29]  Carey Michael Lisse,et al.  On the rotational breakup of cometary nuclei and centaurs , 2006 .

[30]  Brian Carcich,et al.  A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density , 2007 .

[31]  W. Delamere,et al.  The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model , 2007 .

[32]  S. Debei,et al.  Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta , 2007 .

[33]  A. Bar-Nun,et al.  Comparison between the findings of Deep Impact and our experimental results on large samples of gas-laden amorphous ice , 2007 .