Splitting schemes and unfitted-mesh methods for the coupling of an incompressible fluid with a thin-walled structure

Two unfitted-mesh methods for a linear incompressible fluid/thin-walled structure interaction problem are introduced and analyzed. The spatial discretization is based on different variants of Nitsche’s method with cut elements. The degree of fluid–solid splitting (semi-implicit or explicit) is given by the order in which the space and time discretizations are performed. The a priori stability and error analysis shows that strong coupling is avoided without compromising stability and accuracy. Numerical experiments with a benchmark illustrate the accuracy of the different methods proposed.

[1]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[2]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[3]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[4]  Patrick Le Tallec,et al.  Numerical analysis of a linearised fluid-structure interaction problem , 2000, Numerische Mathematik.

[5]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[6]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[7]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[8]  L. Hou,et al.  ANALYSIS OF A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM , 2003 .

[9]  Qiang Du,et al.  Semidiscrete Finite Element Approximations of a Linear Fluid-Structure Interaction Problem , 2004, SIAM J. Numer. Anal..

[10]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[11]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[12]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[13]  Robert Michael Kirby,et al.  Unconditionally stable discretizations of the immersed boundary equations , 2007, J. Comput. Phys..

[14]  A. Quarteroni,et al.  A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD , 2007 .

[15]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[16]  L. Heltai,et al.  Mathematical Models and Methods in Applied Sciences Vol. 17, No. 10 (17) 1479–1505 c ○ World Scientific Publishing Company NUMERICAL STABILITY OF THE FINITE ELEMENT IMMERSED BOUNDARY METHOD , 2005 .

[17]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[18]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[19]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[20]  V. Brummelen Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction , 2009 .

[21]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[22]  Matteo Astorino,et al.  Convergence analysis of a projection semi-implicit coupling scheme for fluid–structure interaction problems , 2010, Numerische Mathematik.

[23]  D. Boffi,et al.  FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES , 2011 .

[24]  Tomohiro Sawada,et al.  LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh , 2011 .

[25]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[26]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[27]  ANDRÉ MASSING,et al.  Efficient Implementation of Finite Element Methods on Nonmatching and Overlapping Meshes in Three Dimensions , 2013, SIAM J. Sci. Comput..

[28]  Annalisa Quaini,et al.  Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement , 2012, J. Comput. Phys..

[29]  Miguel A. Fernández,et al.  Incremental displacement-correction schemes for incompressible fluid-structure interaction , 2012, Numerische Mathematik.

[30]  Miguel A. Fernández,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[31]  Miguel A. Fernández,et al.  Splitting schemes for incompressible fluid/thin-walled structure interaction with unfitted meshes , 2015 .

[32]  Daniele Boffi,et al.  The Finite Element Immersed Boundary Method with Distributed Lagrange Multiplier , 2014, SIAM J. Numer. Anal..

[33]  Miguel A. Fernández,et al.  Convergence and error analysis for a class of splitting schemes in incompressible fluid–structure interaction , 2016 .

[34]  Martina Bukac,et al.  Stability and Convergence Analysis of the Extensions of the Kinematically Coupled Scheme for the Fluid-Structure Interaction , 2016, SIAM J. Numer. Anal..

[35]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[36]  Daniele Boffi,et al.  A fictitious domain approach with Lagrange multiplier for fluid-structure interactions , 2015, Numerische Mathematik.

[37]  Wulf G. Dettmer,et al.  A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure interaction with solid–solid contact , 2018, Computer Methods in Applied Mechanics and Engineering.

[38]  Woojin Kim,et al.  A weak-coupling immersed boundary method for fluid-structure interaction with low density ratio of solid to fluid , 2018, J. Comput. Phys..