Lagrangian field theory in space and time for geometrically exact Cosserat rods

In this article, we derive the balance of linear and angular momentum equations for geometrically exact Cosserat rods from a two dimensional Lagrangian field approach in space and time. As we use a full quaternion description for the rotatory part of the balance equations, they constitute a system of nonlinear hyperbolic partial differential algebraic equations. We prove their equivalence to the classical Euclidean frame description.

[1]  J. Spillmann,et al.  CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects , 2007, SCA '07.

[2]  A. Schwab,et al.  HOW TO DRAW EULER ANGLES AND UTILIZE EULER PARAMETERS , 2006 .

[3]  John H. Maddocks,et al.  An impetus-striction simulation of the dynamics of an elastica , 1996 .

[4]  J. W. Humberston Classical mechanics , 1980, Nature.

[5]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[6]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[7]  Stuart S. Antman,et al.  The Theory of Rods , 1973 .

[8]  S. Kehrbaum,et al.  Elastic rods, rigid bodies, quaternions and the last quadrature , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[10]  J. Jensen On the shear coefficient in Timoshenko's beam theory , 1983 .

[11]  Ignacio Romero,et al.  The interpolation of rotations and its application to finite element models of geometrically exact rods , 2004 .

[12]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[13]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[14]  H. Lang,et al.  Multi-body dynamics simulation of geometrically exact Cosserat rods , 2011 .

[15]  Werner C. Rheinboldt,et al.  Nonholonomic motion of rigid mechanical systems from a DAE viewpoint , 1987 .

[16]  L. M. Milne-Thomson Methoden der mathematischen Physik , 1944, Nature.

[17]  R. A. Spurrier Comment on " Singularity-Free Extraction of a Quaternion from a Direction-Cosine Matrix" , 1978 .

[18]  Andrew J. Hanson Visualizing Quaternions (The Morgan Kaufmann Series in Interactive 3D Technology) , 2006 .

[19]  S. S. Antman,et al.  Dynamical problems for geometrically exact theories of nonlinearly viscoelastic rods , 1996 .

[20]  S. Antman Nonlinear problems of elasticity , 1994 .