Modeling Radio Communication Blackout and Blackout Mitigation in Hypersonic Vehicles

A procedure for the modeling and analysis of radio communication blackout of hypersonic vehicles is presented. The weakly ionized plasma generated around the surface of a hypersonic reentry vehicle is simulated using full Navier–Stokes equations in multispecies single fluid form. A seven-species air chemistry model is used to compute the individual species densities in air including ionization: plasma densities are compared with the experiment. The electromagnetic wave’s interaction with the plasma layer is modeled using multifluid equations for fluid transport and full Maxwell’s equations for the electromagnetic fields. The multifluid solver is verified for a whistler wave propagating through a slab. First principles radio communication blackout over a hypersonic vehicle is demonstrated along with a simple blackout mitigation scheme using a magnetic window.

[1]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[2]  V. Zhdanov Transport Processes in Multicomponent Plasma , 2002 .

[3]  Ryan P. Starkey Electromagnetic Wave / Magnetoactive Plasma Sheath Interaction for Hypersonic Vehicle Telemetry Blackout Analysis , 2003 .

[4]  William L. Grantham,et al.  Flight results of a 25000-foot-per-second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance , 1970 .

[5]  Michael Keidar,et al.  Electromagnetic Reduction of Plasma Density During Atmospheric Reentry and Hypersonic Flights , 2008 .

[6]  W. Bailey,et al.  Governing Equations for Weakly Ionized Plasma Flowfields of Aerospace Vehicles , 2002 .

[7]  Paul H Rutherford,et al.  Introduction to Plasma Physics , 1995 .

[8]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[9]  Takashi Abe,et al.  Prediction Performance of Blackout and Plasma Attenuation in Atmospheric Reentry Demonstrator Mission , 2014 .

[10]  H. Hodara The Use of Magnetic Fields in the Elimination of the Re-Entry Radio Blackout , 1961, Proceedings of the IRE.

[11]  Takashi Abe,et al.  Examination of Radio Frequency Blackout for an Inflatable Vehicle During Atmospheric Reentry , 2014 .

[12]  Peter W. Rambo,et al.  A comparison of kinetic and multifluid simulations of laser-produced colliding plasmas , 1994 .

[13]  Uri Shumlak,et al.  A high resolution wave propagation scheme for ideal Two-Fluid plasma equations , 2006, J. Comput. Phys..

[14]  Claus-Dieter Munz,et al.  A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes , 2000 .

[15]  Claus-Dieter Munz,et al.  A Finite-Volume Method for the Maxwell Equations in the Time Domain , 2000, SIAM J. Sci. Comput..

[17]  Peter W. Rambo,et al.  Interpenetration and ion separation in colliding plasmas , 1994 .

[18]  W. L. Jones,et al.  Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second , 1972 .

[19]  R. Manning Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation , 2009 .

[20]  R. Stenzel Whistler wave propagation in a large magnetoplasma , 1976 .

[21]  Hiroshi Matsumoto,et al.  Computer experiments on radio blackout of a reentry vehicle , 2000 .

[22]  M. Visbal,et al.  High-Order Methods For Wave Propagation , 2008 .

[23]  T. L. Edwards,et al.  CUBIT mesh generation environment. Volume 1: Users manual , 1994 .

[24]  Uri Shumlak,et al.  Approximate Riemann solver for the two-fluid plasma model , 2003 .

[25]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[26]  R. Stenzel,et al.  A new method for removing the blackout problem on reentry vehicles , 2013 .

[27]  Richard J. Thompson,et al.  Fully Coupled Fluid and Electrodynamic Modeling of Plasmas: A Two-fluid Isomorphism and a Strong Conservative Flux-coupled Finite Volume Framework , 2013 .

[28]  P. Stoltz,et al.  Nautilus: A Tool for Modeling Fluid Plasmas , 2013 .

[29]  N. Sternberg,et al.  Resonant Transmission of Electromagnetic Waves in Multilayer Dense-Plasma Structures , 2009, IEEE Transactions on Plasma Science.

[30]  George Teel,et al.  Laboratory Modeling of the Plasma Layer at Hypersonic Flight , 2014 .

[31]  Francis F. Chen,et al.  Amplification and absorption of electromagnetic waves in overdense plasmas , 1974 .

[32]  Mario Mulansky,et al.  Odeint - Solving ordinary differential equations in C++ , 2011, ArXiv.

[33]  Huang Hk,et al.  Modeling and Simulation. , 1982 .

[34]  A. Hakim,et al.  Time-domain simulation of nonlinear radiofrequency phenomena , 2013 .

[35]  M. Gilmore,et al.  Experimental characterization of the stagnation layer between two obliquely merging supersonic plasma jets. , 2013, Physical review letters.

[36]  Uri Shumlak,et al.  A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations , 2010, 1003.4542.

[37]  Isaiah M. Blankson,et al.  Review of Leading Approaches for Mitigating Hypersonic Vehicle Communications Blackout and a Method of Ceramic Particulate Injection Via Cathode Spot Arcs for Blackout Mitigation , 2010 .

[38]  E. A. Johnson Gaussian-Moment Relaxation Closures for Verifiable Numerical Simulation of Fast Magnetic Reconnection in Plasma , 2014, 1409.6985.

[39]  U. Shumlak,et al.  High-order finite element method for plasma modeling , 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS).

[40]  S. Mudaliar,et al.  Radiation Characteristics of Antennas Embedded in a Medium With a Two-Temperature Electron Population , 2012, IEEE Transactions on Antennas and Propagation.

[41]  Uri Shumlak,et al.  Numerical Methods for Two-Fluid Dispersive Fast MHD Phenomena , 2011 .

[42]  Harish Kumar,et al.  Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations , 2011, J. Sci. Comput..