A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions.

This tutorial review focuses on the recent development of rhodamine derivatives, in which the spirolactam (non-fluorescent) to ring-opened amide (fluorescent) process was utilized.

[1]  Christoph Weder,et al.  Fluorescent sensors for the detection of chemical warfare agents. , 2007, Chemistry.

[2]  Igor L. Medintz,et al.  Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. , 2006, Angewandte Chemie.

[3]  Eric V Anslyn,et al.  Differential receptor arrays and assays for solution-based molecular recognition. , 2006, Chemical Society reviews.

[4]  Wei Huang,et al.  Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media. , 2007, Inorganic chemistry.

[5]  Anthony W. Czarnik,et al.  Chemical Communication in Water Using Fluorescent Chemosensors , 1994 .

[6]  M. Balcerzak Sensitive spectrophotometric determination of osmium with tin(II) chloride and rhodamine B after flotation using cyclohexane. , 1988, The Analyst.

[7]  Juyoung Yoon,et al.  Fluorescent molecular logic gates using microfluidic devices. , 2008, Angewandte Chemie.

[8]  K. Sasamoto,et al.  Detection of nitric oxide and nitrite by using a Rhodamine-type fluorescent indicator , 1998 .

[9]  Jiasheng Wu,et al.  Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. , 2007, Organic letters.

[10]  A. W. Czarnik,et al.  A LONG-WAVELENGTH FLUORESCENT CHEMODOSIMETER SELECTIVE FOR CU(II) ION IN WATER , 1997 .

[11]  Jin-Gou Xu,et al.  Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. , 2006, Organic letters.

[12]  Jiasheng Wu,et al.  Calix[4]arene-based, Hg2+ -induced intramolecular fluorescence resonance energy transfer chemosensor. , 2007, The Journal of organic chemistry.

[13]  J. Tae,et al.  Rhodamine-hydroxamate-based fluorescent chemosensor for FeIII , 2007 .

[14]  E. Noelting,et al.  Zur Kenntniss der Rhodamine , 1905 .

[15]  Fuyou Li,et al.  A selective turn-on fluorescent sensor for FeIII and application to bioimaging , 2007 .

[16]  Yasuhiro Shiraishi,et al.  A new rhodamine-based fluorescent chemosensor for transition metal cations synthesized by one-step facile condensation , 2007 .

[17]  Jin-Gou Xu,et al.  Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II). , 2008, Chemical communications.

[18]  Jong Seung Kim,et al.  Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine. , 2008, Organic letters.

[19]  M. Davis,et al.  Design and preparation of organic-inorganic hybrid catalysts. , 2002, Chemical reviews.

[20]  A. Tong,et al.  New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. , 2006, Organic letters.

[21]  J. Noh,et al.  Rhodamine B Hydrazide Revisited: Chemodosimetric Hg 2+ -selective Signaling Behavior in Aqueous Environments , 2008 .

[22]  Juyoung Yoon,et al.  Imidazolium receptors for the recognition of anions. , 2006, Chemical Society reviews.

[23]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[24]  E. Sandell,et al.  Rhodamine B Equilibria , 1956 .

[25]  Uwe Pischel,et al.  Chemical approaches to molecular logic elements for addition and subtraction. , 2007, Angewandte Chemie.

[26]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[27]  Juyoung Yoon,et al.  A highly selective fluorescent chemosensor for Pb2+. , 2005, Journal of the American Chemical Society.

[28]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[29]  Fuyou Li,et al.  Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. , 2007, Organic letters.

[30]  J. Tae,et al.  A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. , 2005, Journal of the American Chemical Society.

[31]  Yasuhiro Shiraishi,et al.  Cu(II)-selective green fluorescence of a rhodamine-diacetic acid conjugate. , 2007, Organic letters.

[32]  Jong Seung Kim,et al.  Luminophore-immobilized mesoporous silica for selective Hg2+ sensing , 2007 .

[33]  Jianzhang Zhao,et al.  An enantioselective fluorescent sensor for sugar acids. , 2004, Journal of the American Chemical Society.

[34]  J. Sessler,et al.  Synthetic expanded porphyrin chemistry. , 2003, Angewandte Chemie.

[35]  Y. Urano,et al.  Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. , 2007, Journal of the American Chemical Society.

[36]  M. Heagy,et al.  Fluorescent Chemosensors for Carbohydrates: A Decade's Worth of Bright Spies for Saccharides in Review , 2004, Journal of Fluorescence.

[37]  Jung Hyun Soh,et al.  Rhodamine urea derivatives as fluorescent chemosensors for Hg2 , 2007 .

[38]  T. Gunnlaugsson,et al.  Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors , 2006 .

[39]  J. Chmielewski,et al.  Fluorescence imaging of cellular glutathione using a latent rhodamine. , 2008, Organic letters.

[40]  A. Prasanna de Silva,et al.  Luminescent sensors and switches in the early 21st century , 2005 .

[41]  Xiaolan Chen,et al.  Application of rhodamine B hydrazide as a new fluorogenic indicator in the highly sensitive determination of hydrogen peroxide and glucose based on the catalytic effect of iron(III)-tetrasulfonato-phthalocyanine , 2007 .

[42]  J. Sessler,et al.  Strapped and other topographically nonplanar calixpyrrole analogues. Improved anion receptors. , 2008, Chemical communications.

[43]  Philip A. Gale,et al.  Structural and molecular recognition studies with acyclic anion receptors. , 2006, Accounts of chemical research.

[44]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[45]  Duong Tuan Quang,et al.  Calixarene-derived fluorescent probes. , 2007, Chemical reviews.

[46]  T. Maren Colorimetric Microdetermination of Antimony with Rhodamine B , 1947 .

[47]  Injae Shin,et al.  In vivo monitoring of mercury ions using a rhodamine-based molecular probe. , 2006, Journal of the American Chemical Society.

[48]  A. Tong,et al.  A new rhodamine-based chemosensor exhibiting selective Fe(III)-amplified fluorescence. , 2006, Organic letters.

[49]  Huimin Ma,et al.  Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. , 2008, Chemical communications.