Categorical dimension of birational automorphisms and filtrations of Cremona groups

Using a filtration on the Grothendieck ring of triangulated categories, we define the categorical dimension of a birational map between smooth projective varieties. We show that birational automorphisms of bounded categorical dimension form subgroups, which provide a nontrivial filtration of the Cremona group. We discuss some geometrical aspect and some explicit example. In the case of threefolds, we can moreover recover the genus of a birational automorphism, and the filtration defined by Frumkin.

[1]  Savsa Novakovi'c No phantoms in the derived category of curves over arbitrary fields, and derived characterizations of Brauer–Severi varieties , 2017, Journal of Commutative Algebra.

[2]  Izzet Coskun,et al.  Surveys on Recent Developments in Algebraic Geometry , 2017 .

[3]  Asher Auel,et al.  Cycles, derived categories, and rationality , 2016, 1612.02415.

[4]  A. Kuznetsov Derived Categories View on Rationality Problems , 2015, 1509.09115.

[5]  D. Orlov SMOOTH AND PROPER NONCOMMUTATIVE SCHEMES AND GLUING OF DG CATEGORIES , 2014, 1402.7364.

[6]  A. Polishchuk,et al.  Exceptional collections on isotropic Grassmannians , 2011, 1110.5607.

[7]  Asher Auel,et al.  Semiorthogonal decompositions and birational geometry of del Pezzo surfaces over arbitrary fields , 2015, 1511.07576.

[8]  Christian Bohning,et al.  On the dynamical degrees of reflections on cubic fourfolds , 2015, 1502.01144.

[9]  E. Shinder,et al.  The Fano variety of lines and rationality problem for a cubic hypersurface , 2014, 1405.5154.

[10]  J. Blanc,et al.  The group of Cremona transformations generated by linear maps and the standard involution , 2014, 1405.2746.

[11]  Richard P. Thomas,et al.  Hodge theory and derived categories of cubic fourfolds , 2012, Duke Mathematical Journal.

[12]  Christian Bohning,et al.  On the Jordan–Hölder property for geometric derived categories , 2012, 1211.1229.

[13]  St'ephane Lamy On the Genus of Birational Maps Between Threefolds , 2014 .

[14]  M. Kontsevich,et al.  Dynamical systems and categories , 2013, 1307.8418.

[15]  Marcello Bernardara,et al.  From semi-orthogonal decompositions to polarized intermediate Jacobians via Jacobians of noncommutative motives , 2013, 1305.4687.

[16]  Kuznetsov Aleksandr Gennad'evich A simple counterexample to the Jordan-Hölder property for derived categories , 2013 .

[17]  M. Bolognesi,et al.  Categorical representability and intermediate Jacobians of Fano threefolds , 2011, 1103.3591.

[18]  M. Bolognesi,et al.  Derived categories and rationality of conic bundles , 2010, Compositio Mathematica.

[19]  M. Marcolli,et al.  Jacobians of noncommutative motives , 2012, 1212.1118.

[20]  J. Sebag,et al.  Birational Self-maps and Piecewise Algebraic Geometry , 2011, 1112.5706.

[21]  M. Marcolli,et al.  Noncommutative motives, numerical equivalence, and semi-simplicity , 2011, 1105.2950.

[22]  Shinnosuke Okawa Semi-orthogonal decomposability of the derived category of a curve , 2011, 1104.4902.

[23]  A. Kuznetsov Base change for semiorthogonal decompositions , 2007, Compositio Mathematica.

[24]  Qing Liu,et al.  The Grothendieck ring of varieties and piecewise isomorphisms , 2010 .

[25]  D. Orlov,et al.  Uniqueness of enhancement for triangulated categories , 2009, 0908.4187.

[26]  Charles Vial PROJECTORS ON THE INTERMEDIATE ALGEBRAIC JACOBIANS , 2009, 0907.3539.

[27]  A. Kuznetsov Derived categories of Fano threefolds , 2008, 0809.0225.

[28]  Y. Kawamata Derived categories of toric varieties III , 2006, 1412.8040.

[29]  T. Bridgeland Derived categories of coherent sheaves , 2006, math/0602129.

[30]  Bernhard Keller,et al.  On differential graded categories , 2006, math/0601185.

[31]  A. Kuznetsov Homological projective duality , 2005, math/0507292.

[32]  Y. Kawamata Derived Categories of Toric Varieties , 2005, math/0503102.

[33]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[34]  M. Larsen,et al.  Grothendieck ring of pretriangulated categories , 2004, math/0401009.

[35]  Franziska Bittner The universal Euler characteristic for varieties of characteristic zero , 2001, Compositio Mathematica.

[36]  Y. André Une introduction aux motifs (motifs purs, motifs mixtes, périodes) , 2004 .

[37]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[38]  C. Voisin Théorie de Hodge et géomětrie algěbrique complexe , 2002 .

[39]  K. Karu,et al.  Torification and factorization of birational maps , 1999, math/9904135.

[40]  C. Weibel The Hodge ?ltration and cyclic homology , 1997 .

[41]  D. Orlov,et al.  PROJECTIVE BUNDLES, MONOIDAL TRANSFORMATIONS, AND DERIVED CATEGORIES OF COHERENT SHEAVES , 1993 .

[42]  Jeff Gipson,et al.  Cycles , 1992, The Americas.

[43]  F. Schreyer,et al.  Cremona transformations and syzygies , 1992 .

[44]  N. Shepherd-barron,et al.  SOME SPECIAL CREMONA TRANSFORMATIONS , 1989 .

[45]  S. Katz,et al.  CREMONA TRANSFORMATIONS WITH SMOOTH IRREDUCIBLE FUNDAMENTAL LOCUS , 1989 .

[46]  A. Beauville Variétés de Prym et jacobiennes intermédiaires , 1977 .

[47]  M. Frumkin A FILTRATION IN THE THREE-DIMENSIONAL CREMONA GROUP , 1973 .

[48]  P. Griffiths,et al.  The intermediate Jacobian of the cubic threefold , 1972 .

[49]  Phillip A. Griffiths,et al.  On the Periods of Certain Rational Integrals: II , 1969 .

[50]  B. Kostant,et al.  Differential Forms on Regular Affine Algebras , 1962 .