Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach

This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displacements on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in previous works, which removes the need for global remeshing when performing large displacements. The optimizations, and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabilities in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and industrial configurations.

[1]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[2]  Gian Luca Delzanno,et al.  Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution , 2011, J. Comput. Phys..

[3]  Alain Dervieux,et al.  Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations , 2000 .

[4]  Boniface Nkonga,et al.  On the conservative and accurate CFD approximations for moving meshes and moving boundaries , 2000 .

[5]  Rainald Loehner,et al.  A new ALE adaptive unstructured methodology for the simulation of moving bodies , 1994 .

[6]  Thierry Coupez,et al.  Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach , 2009 .

[7]  Mikhail Shashkov,et al.  Extension of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity , 2008 .

[8]  D. Pelletier,et al.  Philiadium gregarium versus Aurelia aurita: on propulsion of jellyfish , 2010 .

[9]  Charbel Farhat,et al.  Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes , 1999 .

[10]  C Thompson,et al.  Applied CFD techniques: An introduction based on finite element methods , 2002 .

[11]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[12]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[13]  Dominique Pelletier,et al.  Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow , 2009, J. Comput. Phys..

[14]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[15]  Frédéric Alauzet,et al.  Time-accurate anisotropic mesh adaptation for three-dimensional time-dependent problems with body-fitted moving geometries , 2017, J. Comput. Phys..

[16]  Dimitri J. Mavriplis,et al.  Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes , 2006, J. Comput. Phys..

[17]  Paul-Henry Cournède,et al.  Positivity statements for a mixed-element-volume scheme on fixed and moving grids , 2006 .

[18]  Dimitri J. Mavriplis,et al.  Higher-order Time Integration Schemes for Aeroelastic Applications on Unstructured Meshes , 2006 .

[19]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[20]  Giuseppe Quaranta,et al.  Arbitrary Lagrangian Eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping , 2011, J. Comput. Phys..

[21]  M. Mehrenberger,et al.  P1‐conservative solution interpolation on unstructured triangular meshes , 2010 .

[22]  Frédéric Alauzet,et al.  Two Mesh Deformation Methods Coupled with a Changing-connectivity Moving Mesh Method for CFD Applications , 2014 .

[23]  Géraldine Olivier,et al.  Anisotropic metric-based mesh adaptation for unsteady CFD simulations involving moving geometries. (Adaptation de maillage anisotrope par prescription de champ de métriques appliquée aux simulations instationnaires en géométrie mobile) , 2011 .

[24]  J. Remacle,et al.  A mesh adaptation framework for dealing with large deforming meshes , 2010 .

[25]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[26]  C. Dobrzynski,et al.  Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations , 2008, IMR.

[27]  Frédéric Alauzet,et al.  A changing-topology moving mesh technique for large displacements , 2013, Engineering with Computers.

[28]  Emmanuel Lefrançois,et al.  An Introduction to Fluid-Structure Interaction: Application to the Piston Problem , 2010, SIAM Rev..

[29]  Charbel Farhat,et al.  Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .

[30]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[31]  Timothy J. Baker,et al.  Dynamic adaptation for deforming tetrahedral meshes , 1999 .

[32]  Frédéric Alauzet,et al.  A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes , 2016 .

[33]  Frédéric Alauzet,et al.  On the Use of Space Filling Curves for Parallel Anisotropic Mesh Adaptation , 2009, IMR.

[34]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..

[35]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[36]  Adrien Loseille,et al.  Serial and Parallel Mesh Modification Through a Unique Cavity-Based Primitive , 2013, IMR.

[37]  P. George,et al.  ‘Ultimate’ robustness in meshing an arbitrary polyhedron , 2003 .

[38]  Nigel P. Weatherill,et al.  A method for time accurate turbulent compressible fluid flow simulation with moving boundary components employing local remeshing , 2007 .

[39]  Rainald Löhner,et al.  Improved ALE mesh velocities for moving bodies , 1996 .

[40]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[41]  Hervé Guillard,et al.  Godunov type method on non-structured meshes for three-dimensional moving boundary problems , 1994 .

[42]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[43]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[44]  Scott M. Murman,et al.  Simulations of 6-DOF Motion with a Cartesian Method , 2003 .

[45]  Paul-Louis George,et al.  3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations , 2007, J. Comput. Phys..

[46]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[47]  Rao V. Garimella,et al.  Proceedings of the 17th International Meshing Roundtable , 2008 .

[48]  Zhi Yang,et al.  Unstructured Dynamic Meshes with Higher-order Time Integration Schemes for the Unsteady Navier-Stokes Equations , 2005 .

[49]  Eric Blades,et al.  A fast mesh deformation method using explicit interpolation , 2012, J. Comput. Phys..

[50]  Frédéric Alauzet,et al.  A New Changing-Topology ALE Scheme for Moving Mesh Unsteady Simulations , 2011 .

[51]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[52]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[53]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[54]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[55]  J. Benek,et al.  A 3-D Chimera Grid Embedding Technique , 1985 .

[56]  Eiji Shima,et al.  Validation of Arbitrary Unstructured CFD Code for Aerodynamic Analyses , 2011 .

[57]  Stephane Etienne,et al.  High-order temporal accuracy for 3D finite-element ALE flow simulations , 2014 .