The strong law of large numbers for k-means and best possible nets of Banach valued random variables
暂无分享,去创建一个
[1] A. Skorokhod. Limit Theorems for Stochastic Processes , 1956 .
[2] K. Parthasarathy,et al. Probability measures on metric spaces , 1967 .
[3] K. Parthasarathy. PROBABILITY MEASURES IN A METRIC SPACE , 1967 .
[4] I. Singer. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces , 1970 .
[5] Richard B. Holmes,et al. A Course on Optimization and Best Approximation , 1972 .
[6] J. Retherford. Review: J. Diestel and J. J. Uhl, Jr., Vector measures , 1978 .
[7] Harald Sverdrup-Thygeson. Strong Law of Large Numbers for Measures of Central Tendency and Dispersion of Random Variables in Compact Metric Spaces , 1981 .
[8] D. Pollard. Strong Consistency of $K$-Means Clustering , 1981 .
[9] N. Herrndorf,et al. Approximation of vector-valued random variables by constants , 1983 .
[10] Juan Antonio Cuesta Albertos. Medidas de centralización multidimensionales (Ley fuerte de los grandes números) , 1984 .
[11] Carlos Matrán,et al. Uniform consistency of r-means , 1988 .