The Filippov characteristic flow for the aggregation equation with mildly singular potentials

[1]  Andrea L. Bertozzi,et al.  A blob method for the aggregation equation , 2014, Math. Comput..

[2]  Nicolas Vauchelet,et al.  Numerical Methods for One-Dimensional Aggregation Equations , 2015, SIAM J. Numer. Anal..

[3]  A. Bertozzi,et al.  Ring patterns and their bifurcations in a nonlocal model of biological swarms , 2015 .

[4]  J. Carrillo,et al.  A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure , 2014, 1402.4252.

[5]  J. Carrillo,et al.  Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D , 2013, 1310.4110.

[6]  Marco Di Francesco,et al.  Measure solutions for non-local interaction PDEs with two species , 2013 .

[7]  S. Levin,et al.  Diffusion and Ecological Problems: Modern Perspectives , 2013 .

[8]  F. James,et al.  Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations , 2013, 1303.5836.

[9]  J. Carrillo,et al.  Dimensionality of Local Minimizers of the Interaction Energy , 2012, 1210.6795.

[10]  J. Carrillo,et al.  Gradient flows for non-smooth interaction potentials , 2012, 1206.4453.

[11]  David Uminsky,et al.  On Soccer Balls and Linearized Inverse Statistical Mechanics , 2012, J. Nonlinear Sci..

[12]  T. Kolokolnikov,et al.  PREDICTING PATTERN FORMATION IN PARTICLE INTERACTIONS , 2012 .

[13]  Y. Huang,et al.  Asymptotics of blowup solutions for the aggregation equation , 2012 .

[14]  Magali Lécureux-Mercier,et al.  Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow , 2011, 1112.4132.

[15]  N. Vauchelet,et al.  Chemotaxis: from kinetic equations to aggregate dynamics , 2011, Nonlinear Differential Equations and Applications NoDEA.

[16]  R. Colombo,et al.  A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC , 2011, 1104.2985.

[17]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[18]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[19]  S. Bianchini,et al.  An Estimate on the Flow Generated by Monotone Operators , 2010 .

[20]  Y.Sugiyama,et al.  Measure valued solutions of the 2D Keller-Segel system , 2010, 1011.0282.

[21]  B. Perthame,et al.  Travelling plateaus for a hyperbolic Keller–Segel system with attraction and repulsion: existence and branching instabilities , 2010, 1009.6090.

[22]  Andrea L. Bertozzi,et al.  Self-Similar Blowup Solutions to an Aggregation Equation in Rn , 2010, SIAM J. Appl. Math..

[23]  Christian Schmeiser,et al.  The two-dimensional Keller-Segel model after blow-up , 2009 .

[24]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[25]  Jesús Rosado,et al.  Uniqueness of Bounded Solutions to Aggregation Equations by Optimal Transport Methods , 2009 .

[26]  C. Villani Optimal Transport: Old and New , 2008 .

[27]  M. Bodnar,et al.  An integro-differential equation arising as a limit of individual cell-based models , 2006 .

[28]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[29]  C. Schmeiser,et al.  Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms , 2005, Journal of mathematical biology.

[30]  G. Loeper Uniqueness of the solution to the Vlasov-Poisson system with bounded density , 2005, math/0504140.

[31]  B. Perthame,et al.  Derivation of hyperbolic models for chemosensitive movement , 2005, Journal of mathematical biology.

[32]  D. Morale,et al.  An interacting particle system modelling aggregation behavior: from individuals to populations , 2005, Journal of mathematical biology.

[33]  G. Toscani Kinetic and Hydrodynamic Models of Nearly Elastic Granular Flows , 2004 .

[34]  G. Toscani,et al.  Long-Time Asymptotics of Kinetic Models of Granular Flows , 2004 .

[35]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[36]  C. Villani Topics in Optimal Transportation , 2003 .

[37]  F. Poupaud,et al.  Diagonal Defect Measures, Adhesion Dynamics and Euler Equation , 2002 .

[38]  B. François,et al.  Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness , 1999 .

[39]  F. James,et al.  One-dimensional transport equations with discontinuous coefficients , 1998 .

[40]  Michel Rascle,et al.  Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients , 1997 .

[41]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[42]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[43]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[44]  Jean-Pierre Aubin,et al.  Differential Inclusions - Set-Valued Maps and Viability Theory , 1984, Grundlehren der mathematischen Wissenschaften.

[45]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[46]  C. Patlak Random walk with persistence and external bias , 1953 .