Achievements and Challenges in the Science of Space Weather

In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.

[1]  Umran S. Inan,et al.  Wave acceleration of electrons in the Van Allen radiation belts , 2005, Nature.

[2]  R. Reinhard,et al.  Propagation of flare protons in the solar atmosphere , 1974 .

[3]  Bernard V. Jackson,et al.  Observations of a Comet Tail Disruption Induced by the Passage of a CME , 2008 .

[4]  S. Samwel,et al.  Statistical Evidence for Contributions of Flares and Coronal Mass Ejections to Major Solar Energetic Particle Events , 2014, 1411.4133.

[5]  W. Dröge,et al.  The Large Longitudinal Spread of Solar Energetic Particles During the 17 January 2010 Solar Event , 2012, 1206.1520.

[6]  G. Reeves,et al.  Acceleration and loss of relativistic electrons during geomagnetic storms , 2003 .

[7]  M. Neugebauer,et al.  THE MISSION OF MARINER II- PRELIMINARY OBSERVATIONS - SOLAR PLASMA EXPERIMENT , 1962 .

[8]  Russell A. Howard,et al.  Associations between coronal mass ejections and solar energetic proton events , 1983 .

[9]  Juan V. Rodriguez,et al.  Unraveling the drivers of the storm time radiation belt response , 2015 .

[10]  George E. Hale,et al.  On the Probable Existence of a Magnetic Field in Sun-Spots , 1908 .

[11]  R. Skoug,et al.  Weaker solar wind from the polar coronal holes and the whole Sun , 2008 .

[12]  Firdevs Duru,et al.  Plasma environment of Mars as observed by simultaneous MEX-ASPERA-3 and MEX-MARSIS observations , 2008 .

[13]  Risto Pirjola,et al.  Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length , 1998 .

[14]  Eckart Marsch,et al.  Interplanetary shock wave extent in the inner heliosphere as observed by multiple spacecraft , 2011 .

[15]  H. Klüber The Solar Corona , 1966, Nature.

[16]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[17]  H. Alfvén On the Theory of Comet Tails , 1957 .

[18]  L. Biermann Kometenschweife und solare Korpuskularstrahlung , 1951 .

[19]  W. Gleissberg A long-periodic fluctuation of the sun-spot numbers , 1939 .

[20]  N. Y. Ganushkina,et al.  Defining and resolving current systems in geospace , 2013, 1701.04714.

[21]  K. Mandt,et al.  CME impact on comet 67P/Churyumov-Gerasimenko , 2016, 1809.04981.

[22]  Daniel N. Baker,et al.  MESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditions , 2014 .

[23]  John A. Eddy,et al.  The Maunder Minimum , 1976, Science.

[24]  G. Reeves,et al.  Acceleration and loss of relativistic electrons during small geomagnetic storms , 2015, Geophysical research letters.

[25]  Syun-Ichi Akasofu,et al.  The development of the auroral substorm. , 1964 .

[26]  Syun-Ichi Akasofu,et al.  Energy coupling between the solar wind and the magnetosphere , 1981 .

[27]  Andreas Klassen,et al.  CIRCUMSOLAR ENERGETIC PARTICLE DISTRIBUTION ON 2011 NOVEMBER 3 , 2015 .

[28]  S. Forbush,et al.  World-Wide Changes in Cosmic-Ray Intensity , 1939 .

[29]  S. Chapman,et al.  A New Theory of Magnetic Storms. , 1930, Nature.

[30]  Syun-Ichi Akasofu,et al.  The ring current, geomagnetic disturbance, and the Van Allen radiation belts , 1961 .

[31]  P. Riley On the probability of occurrence of extreme space weather events , 2012 .

[32]  T. T. von Rosenvinge,et al.  Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares , 1985 .

[33]  M. L. Kaiser,et al.  Coronal and Interplanetary Propagation of CME/Shocks from Radio, In Situ and White-Light Observations , 2007 .

[34]  P. Mayaud,et al.  Derivation, Meaning, and Use of Geomagnetic Indices , 1980 .

[35]  Geoffrey D. Reeves,et al.  Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions , 2007 .

[36]  S. Chapman,et al.  An outline of a theory of magnetic storms , 1918 .

[37]  J. Gosling The solar flare myth , 1993 .

[38]  D N Baker,et al.  A Long-Lived Relativistic Electron Storage Ring Embedded in Earth’s Outer Van Allen Belt , 2013, Science.

[39]  Bernhard M. Haisch,et al.  Comment on “The solar flare myth” by J. T. Gosling , 1995 .

[40]  Keith M. Groves,et al.  Impacts of the December 2006 solar radio bursts on the performance of GPS , 2009 .

[41]  C. Rodger,et al.  Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone , 2014, Nature Communications.

[42]  Antti Pulkkinen,et al.  Solar wind drivers of large geomagnetically induced currents during the solar cycle 23 , 2008 .

[43]  D. Curtis,et al.  MAVEN observations of the response of Mars to an interplanetary coronal mass ejection , 2015, Science.

[44]  Daniel N. Baker,et al.  Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere , 2008 .

[45]  Xinlin Li,et al.  Dst model for 1995–2002 , 2006 .

[46]  L. Biermann,et al.  Solar corpuscular radiation and the interplanetary gas , 1957 .

[47]  U. R. Rao,et al.  Cosmic‐ray propagation processes: 2. The energetic storm‐particle event , 1967 .

[48]  M. Neugebauer,et al.  Solar Plasma Experiment , 1962, Science.

[49]  Glenn M. Mason,et al.  EVIDENCE FOR A COMMON ACCELERATION MECHANISM FOR ENRICHMENTS OF 3He AND HEAVY IONS IN IMPULSIVE SEP EVENTS , 2016 .

[50]  R. McPherron,et al.  An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay , 2000 .

[51]  H. Koskinen,et al.  Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity , 2004 .

[52]  M. Shea,et al.  The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses , 2016 .

[53]  A. Balogh,et al.  Quasi-parallel Shock Structure and Processes , 2005 .

[54]  Donald V. Reames,et al.  What Are the Sources of Solar Energetic Particles? Element Abundances and Source Plasma Temperatures , 2015, 1510.03449.

[55]  Harlan E. Spence,et al.  Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt , 2016, Nature Physics.

[56]  Antti Lakka,et al.  Magnetosheath control of solar wind‐magnetosphere coupling efficiency , 2016 .

[57]  J. B. Blake,et al.  Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus , 2013, Nature.

[58]  James A. Klimchuk,et al.  Key aspects of coronal heating , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  S. Kahler,et al.  The Role of the Big Flare Syndrome in Correlations of Solar Energetic Proton Fluxes and Associated Microwave Burst Parameters , 1982 .

[60]  Alessandro P. Cerruti,et al.  Effect of intense December 2006 solar radio bursts on GPS receivers , 2008 .

[61]  J. Gonzalez-Esparza,et al.  Kinematics of ICMEs/Shocks: Blast Wave Reconstruction Using Type-II Emissions , 2015, 1501.05551.

[62]  Daniel N. Baker,et al.  MESSENGER observations of magnetopause structure and dynamics at Mercury , 2013 .

[63]  Haimin Wang,et al.  Statistical Distributions of Speeds of Coronal Mass Ejections , 2005 .

[64]  T. L. Cline,et al.  Explorer 12 observations of solar cosmic rays and energetic storm particles after the solar flare of September 28, 1961 , 1962 .

[65]  James A. Slavin,et al.  Hot Flow Anomalies at Venus , 2012 .

[66]  David J. McComas,et al.  Ulysses' return to the slow solar wind , 1998 .

[67]  M. A. Stuchly,et al.  Engineering Issues in Space Weather , 1999 .

[68]  Luca Bertello,et al.  The Solar Cycle , 2012 .

[69]  Daniel N. Baker,et al.  Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm , 2016 .

[70]  Kunihiro Keika,et al.  Pileup accident hypothesis of magnetic storm on 17 March 2015 , 2015 .

[71]  T. Potemra,et al.  Field‐aligned currents in the dayside cusp observed by Triad , 1976 .

[72]  Maria M. Kuznetsova,et al.  Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere , 2009 .

[73]  E. Cliver,et al.  The 1859 Solar–Terrestrial Disturbance And the Current Limits of Extreme Space Weather Activity , 2004 .

[74]  Minna Palmroth,et al.  Vlasiator: First global hybrid-Vlasov simulations of Earth's foreshock and magnetosheath , 2014 .

[75]  David G. Sibeck,et al.  The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas , 2014 .

[76]  F. A. Lindemann LXX. Note on the theory of magnetic storms , 1919 .

[77]  Heinrich Schwabe,et al.  Sonnen — Beobachtungen im Jahre 1843 , 1844 .

[78]  H. Koskinen,et al.  Variability of magnetospheric storms driven by different solar wind perturbations , 2002 .

[79]  Charles J. Farrugia,et al.  Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections , 2014, Nature Communications.

[80]  A. Balogh,et al.  Quasi-perpendicular Shock Structure and Processes , 2005 .

[81]  J. F. Mckenzie,et al.  The southern high-speed stream: results from the SWICS instrument on Ulysses. , 1995, Science.

[82]  Harlan E. Spence,et al.  Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock , 2016 .

[83]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .