Generalized Coherent States

The coherent states of the harmonic oscillator and hence the radiation field (which is considered as an assembly of oscillators) can be defined in many different, but essentially equivalent ways.1

[1]  T. S. Santhanam Does Weyl’s commutation relation imply a generalized statistics? , 1977 .

[2]  T. Santhanam,et al.  Quantum mechanics in finite dimensions , 1976 .

[3]  P. Atkins,et al.  Angular momentum coherent states , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Michael Martin Nieto,et al.  Phase and Angle Variables in Quantum Mechanics , 1968 .

[5]  M. Hongoh Coherent states associated with the continuous spectrum of noncompact groups , 1977 .

[6]  V. Bargmann,et al.  On the Completeness of Coherent States , 1971 .

[7]  J. Bellissard,et al.  Composition of coherent spin states , 1974 .

[8]  A note on the SU(2) bloch coherent states , 1978 .

[9]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[10]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[11]  C. Aragone,et al.  On intelligent spin states , 1976 .

[12]  A. Perelomov Coherent states for arbitrary Lie group , 1972 .

[13]  Yoichiro Nambu Generalized Hamiltonian dynamics , 1973 .

[14]  A. O. Barut,et al.  New “Coherent” States associated with non-compact groups , 1971 .

[15]  R. Jackiw Minimum Uncertainty Product, Number‐Phase Uncertainty Product, and Coherent States , 1968 .

[16]  L. Simmons,et al.  Coherent states for general potentials , 1978 .

[17]  T. Santhanam Quantum mechanics in discrete space and angular momentum , 1977 .

[18]  J. L. Martin,et al.  Generalized classical dynamics, and the ‘classical analogue’ of a Fermioscillator , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  E. Sudarshan,et al.  Para-Bose coherent states , 1978 .

[20]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[21]  N. Mukunda,et al.  Irreducible Representations of Generalized Oscillator Operators , 1963 .

[22]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .