Augmented Lagrangian-Based Sparse Representation Method with Dictionary Updating for Image Deblurring

This paper presents an efficient alternating direction method with patch-based dictionary updating, ADMDU-DEB, for sparse representation regularization framework of image deblurring. The main idea of the proposed method is to reformulate the variational problem as a linear equality constrained problem and then minimize its augmented Lagrangian function. The alternating direction method decouples the minimization by alternately iterating the pixel-based regularization and the patch-based sparse representation. Typically, accelerated sparse coding and simple dictionary updating applied in the sparse representation stage enable the whole algorithm to converge at a relatively small number of iterations. Additionally, the approach is readily extended to solve the same kind of variational problem with a nonnegativity constraint. Experimental results on benchmark test images consistently validate the superiority of the proposed approach and demonstrate that it achieves very competitive deblurring performance, co...

[1]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[2]  Yanning Zhang,et al.  Sparse representation based iterative incremental image deblurring , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[3]  Y. Zhang,et al.  Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization , 2014, Optim. Methods Softw..

[4]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[5]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[6]  Thomas S. Huang,et al.  Sparse representation based blind image deblurring , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[7]  Brendt Wohlberg,et al.  Total-variation regularization with bound constraints , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[8]  Jean Ponce,et al.  Dictionary Learning for Deblurring and Digital Zoom , 2011, ArXiv.

[9]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[10]  Stanley Osher,et al.  Deblurring and Denoising of Images by Nonlocal Functionals , 2005, Multiscale Model. Simul..

[11]  Qiegen Liu,et al.  An augmented Lagrangian multi-scale dictionary learning algorithm , 2011, EURASIP J. Adv. Signal Process..

[12]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[13]  Karen O. Egiazarian,et al.  BM3D Frames and Variational Image Deblurring , 2011, IEEE Transactions on Image Processing.

[14]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[15]  Richard G. Baraniuk,et al.  ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems , 2004, IEEE Transactions on Signal Processing.

[16]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[17]  M. Persson,et al.  Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography , 2001, Physics in medicine and biology.

[18]  Qiegen Liu,et al.  A novel predual dictionary learning algorithm , 2012, J. Vis. Commun. Image Represent..

[19]  Ming-Hsuan Yang,et al.  Single image deblurring with adaptive dictionary learning , 2010, 2010 IEEE International Conference on Image Processing.

[20]  Stephen J. Wright,et al.  Sparse reconstruction by separable approximation , 2009, IEEE Trans. Signal Process..

[21]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[22]  Tieyong Zeng,et al.  A Predual Proximal Point Algorithm Solving a Non Negative Basis Pursuit Denoising Model , 2009, International Journal of Computer Vision.

[23]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[24]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[25]  Guy Gilboa,et al.  Nonlinear Inverse Scale Space Methods for Image Restoration , 2005, VLSM.

[26]  Andy M. Yip,et al.  A Primal-Dual Active-Set Method for Non-Negativity Constrained Total Variation Deblurring Problems , 2007, IEEE Transactions on Image Processing.

[27]  R.W. Schafer,et al.  Constrained iterative restoration algorithms , 1981, Proceedings of the IEEE.

[28]  Michael K. Ng,et al.  A Fast Total Variation Minimization Method for Image Restoration , 2008, Multiscale Model. Simul..

[29]  Lei Zhang,et al.  Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization , 2010, IEEE Transactions on Image Processing.

[30]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[31]  Javier Portilla,et al.  Image restoration through l0 analysis-based sparse optimization in tight frames , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[32]  Truong Q. Nguyen,et al.  An Augmented Lagrangian Method for Total Variation Video Restoration , 2011, IEEE Transactions on Image Processing.

[33]  Liang Xiao,et al.  A Weberized Total Variation Regularization-Based Image Multiplicative Noise Removal Algorithm , 2010, EURASIP J. Adv. Signal Process..

[34]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[35]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[36]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[37]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[38]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[39]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[40]  Brendt Wohlberg,et al.  Efficient Minimization Method for a Generalized Total Variation Functional , 2009, IEEE Transactions on Image Processing.

[41]  Daniel D. Lee,et al.  Multiplicative Updates for Nonnegative Quadratic Programming , 2007, Neural Computation.

[42]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[43]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[44]  Nikolas P. Galatsanos,et al.  Variational Bayesian Image Restoration With a Product of Spatially Weighted Total Variation Image Priors , 2010, IEEE Transactions on Image Processing.

[45]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[46]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[47]  Søren Holdt Jensen,et al.  Algorithms and software for total variation image reconstruction via first-order methods , 2009, Numerical Algorithms.

[48]  Josiane Zerubia,et al.  A deconvolution method for confocal microscopy with total variation regularization , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[49]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[50]  Stefano Soatto,et al.  Direct Sparse Deblurring , 2010, Journal of Mathematical Imaging and Vision.

[51]  Kjersti Engan,et al.  Recursive Least Squares Dictionary Learning Algorithm , 2010, IEEE Transactions on Signal Processing.

[52]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[53]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.