Experimental Heating of Moravian Cherts and its Implication for Palaeolithic Chipped Stone Assemblages

[1]  J. Vergès,et al.  Three archaeomagnetic applications of archaeological interest to the study of burnt anthropogenic cave sediments , 2016 .

[2]  P. Goldberg,et al.  How heat alters underlying deposits and implications for archaeological fire features: A controlled experiment , 2016 .

[3]  F. Lévêque,et al.  A new process of reconstructing archaeological fires from their impact on sediment: a coupled experimental and numerical approach based on the case study of hearths from the cave of Les Fraux (Dordogne, France) , 2016, Archaeological and Anthropological Sciences.

[4]  P. Goldberg,et al.  On the evidence for human use and control of fire at Schöningen. , 2015, Journal of human evolution.

[5]  Ni Su,et al.  Magnetic parameters indicate the intensity of chemical weathering developed on igneous rocks in China , 2015 .

[6]  G. Fetter,et al.  Cooked Bones? Method and Practice for Identifying Bones Treated at Low Temperature , 2015 .

[7]  N. Menguy,et al.  Solutrean and Magdalenian ferruginous rocks heat-treatment: accidental and/or deliberate action? , 2015 .

[8]  S. Mentzer Microarchaeological Approaches to the Identification and Interpretation of Combustion Features in Prehistoric Archaeological Sites , 2014 .

[9]  A. Pedrotti,et al.  Linking site formation processes to magnetic properties. Rock- and archeomagnetic analysis of the combustion levels at Riparo Gaban (Italy) , 2014 .

[10]  Patrick Schmidt,et al.  DETECTING AND QUANTIFYING HEAT TREATMENT OF FLINT AND OTHER SILICA ROCKS: A NEW NON‐DESTRUCTIVE METHOD APPLIED TO HEAT‐TREATED FLINT FROM THE NEOLITHIC CHASSEY CULTURE, SOUTHERN FRANCE , 2013 .

[11]  A. Slodczyk,et al.  Heat treatment in the South African Middle Stone Age: temperature induced transformations of silcrete and their technological implications , 2013 .

[12]  P. Škrdla The Bohunician in Moravia and Adjoining Regions , 2013 .

[13]  Cristo M. Hernández,et al.  The black layer of Middle Palaeolithic combustion structures. Interpretation and archaeostratigraphic implications , 2013 .

[14]  P. Neruda,et al.  The Middle-Upper Palaeolithic transition in Moravia in the context of the Middle Danube region , 2013 .

[15]  L. Shillito,et al.  Geoarchaeological Investigations of Midden‐Formation Processes in the Early to Late Ceramic Neolithic Levels at Çatalhöyük, Turkey ca. 8550–8370 cal BP , 2013 .

[16]  N. Alperson-Afil Archaeology of fire: Methodological aspects of reconstructing fire history of prehistoric archaeological sites , 2012 .

[17]  Kaare Lund Rasmussen,et al.  Pottery firing temperatures: a new method for determining the firing temperature of ceramics and burnt clay , 2012 .

[18]  D. Henry The palimpsest problem, hearth pattern analysis, and Middle Paleolithic site structure , 2012 .

[19]  P. Goldberg,et al.  Insights on Neanderthal fire use at Kebara Cave (Israel) through high resolution study of prehistoric combustion features: Evidence from phytoliths and thin sections , 2012 .

[20]  Killian Driscoll,et al.  Recognising burnt vein quartz artefacts in archaeological assemblages , 2011 .

[21]  N. Goren-Inbar,et al.  EMPLOYING TL METHODS FOR THE VERIFICATION OF MACROSCOPICALLY DETERMINED HEAT ALTERATION OF FLINT ARTEFACTS FROM PALAEOLITHIC CONTEXTS , 2011 .

[22]  P. Villa,et al.  On the earliest evidence for habitual use of fire in Europe , 2011, Proceedings of the National Academy of Sciences.

[23]  P. Villa,et al.  Early Use of Pressure Flaking on Lithic Artifacts at Blombos Cave, South Africa , 2010, Science.

[24]  P. Neruda,et al.  MORAVSKY KRUMLOV IV -A NEW MULTILAYER PALAEOLITHIC SITE IN MORAVIA , 2010 .

[25]  J. Vergès,et al.  Rock-magnetic analyses as a tool to investigate archaeological fired sediments: a case study of Mirador cave (Sierra de Atapuerca, Spain) , 2009 .

[26]  Zenobia Jacobs,et al.  Fire As an Engineering Tool of Early Modern Humans , 2009, Science.

[27]  M. Domański,et al.  Heat treatment of Polish flints , 2009 .

[28]  Peter Hiscock,et al.  Experimental insights into alternative strategies of lithic heat treatment , 2008 .

[29]  P. Goldberg,et al.  Radiometric dating of the Earlier Stone Age sequence in excavation I at Wonderwerk Cave, South Africa: preliminary results. , 2008, Journal of human evolution.

[30]  E. Johnson,et al.  Where were the hearths: an experimental investigation of the archaeological signature of prehistoric fire technology in the alluvial gravels of the Southern Plains , 2007 .

[31]  D. Maki,et al.  Thermally activated mineralogical transformations in archaeological hearths: inversion from maghemite γFe2O4 phase to haematite αFe2O4 form , 2006 .

[32]  P. Crombé,et al.  The ‘invisible’ hearths: a contribution to the discernment of Mesolithic non-structured surface hearths , 2006 .

[33]  P. Mirti,et al.  New developments in the study of ancient pottery by colour measurement , 2004 .

[34]  M. Drahor,et al.  Application of the self‐potential method to archaeological prospection: some case histories , 2004 .

[35]  O. Schneeweiss,et al.  Iron oxide mineralogy in late Miocene red beds from La Gloria, Spain: rock-magnetic, voltammetric and Vis spectroscopy analyses , 2003 .

[36]  P. Goldberg,et al.  Paleolithic burnt bone horizons from the Swabian Jura: Distinguishing between in situ fireplaces and dumping areas , 2003 .

[37]  J. Reyss,et al.  Luminescence dates for the palaeolithic site of Piekary IIa (Poland): comparison between TL of burnt flints and OSL of a loess-like deposit , 2003 .

[38]  B. Ellwood,et al.  The magnetic susceptibility of cherts: Archaeological and geochemical implications of source variation , 2002 .

[39]  D. Heslop,et al.  Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm , 2002 .

[40]  R. Housley,et al.  Dating a burnt mound from Kilmartin, Argyll, Scotland , 2001 .

[41]  D. Heslop,et al.  Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation , 2001 .

[42]  N. Linford,et al.  The Effects of Fire on Archaeological Soils and Sediments: Temperature and Colour Relationships , 2000, Proceedings of the Prehistoric Society.

[43]  J. Tixier,et al.  L'émergence des arts du feu: le traitement thermique des roches siliceuses , 2000 .

[44]  H. Schwarcz,et al.  Geoarchaeology and new research at Jerf al‐Ajla Cave, Syria , 1999 .

[45]  M. Menu,et al.  RED PALAEOLITHIC PIGMENTS: NATURAL HEMATITE OR HEATED GOETHITE?* , 1999 .

[46]  M. Dekkers,et al.  Thermomagnetic behaviour of haematite and goethite as a function of grain size in various non‐saturating magnetic fields , 1998 .

[47]  P. Mirti ON THE USE OF COLOUR COORDINATES TO EVALUATE FIRING TEMPERATURES OF ANCIENT POTTERY , 1998 .

[48]  G. Borradaile,et al.  Characterizing stone tools by rock‐magnetic methods , 1998 .

[49]  David J. Dunlop,et al.  Rock Magnetism: Frontmatter , 1997 .

[50]  L. Slater,et al.  An Investigation of the Ability of Geophysical Methods to Detect and Define Fulachta Fia (Burnt Mounds) on Clare Island, Co. Mayo, Ireland , 1996 .

[51]  Steven L. Kuhn,et al.  Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone , 1995 .

[52]  Randy V. Bellomo,et al.  Methods of determining early hominid behavioral activities associated with the controlled use of fire at FxJj 20 Main, Koobi Fora, Kenva , 1994 .

[53]  G. Borradaile,et al.  Magnetic and Optical Methods for Detecting the Heat Treatment of Chert , 1993 .

[54]  M. Domański,et al.  Effect of heat treatment on Siliceous rocks used in prehistoric lithic technology , 1992 .

[55]  W. Lowrie Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties , 1990 .

[56]  M. Dekkers Magnetic Behavior of Natural Goethite During Thermal Demagnetization , 1988 .

[57]  P. Bleed,et al.  An Objective Test of the Effects of Heat Treatment of Flakeable Stone , 1980, American Antiquity.

[58]  M. Mandeville A Consideration of the Thermal Pretreatment of Chert , 1973 .

[59]  T. Hester Ethnographic evidence for the thermal alteration of siliceous stone , 1972 .

[60]  B. Purdy,et al.  Thermal Alteration of Silica Minerals: An Archeological Approach , 1971, Science.

[61]  A. Leroi-Gourhan Les fouilles d'Arcy-sur-Cure (Yonne) , 1961 .