Genetic resources and breeding approaches for improvement of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa)

Nowadays, the human population is more concerned about their diet and very specific in choosing their food sources to ensure a healthy lifestyle and avoid diseases. So people are shifting to more smart nutritious food choices other than regular cereals and staple foods they have been eating for a long time. Pseudocereals, especially, amaranth and quinoa, are important alternatives to traditional cereals due to comparatively higher nutrition, essential minerals, amino acids, and zero gluten. Both Amaranchaceae crops are low-input demanding and hardy plants tolerant to stress, drought, and salinity conditions. Thus, these crops may benefit developing countries that follow subsistence agriculture and have limited farming resources. However, these are underutilized orphan crops, and the efforts to improve them by reducing their saponin content remain ignored for a long time. Furthermore, these crops have very rich variability, but the progress of their genetic gain for getting high-yielding genotypes is slow. Realizing problems in traditional cereals and opting for crop diversification to tackle climate change, research should be focused on the genetic improvement for low saponin, nutritionally rich, tolerant to biotic and abiotic stresses, location-specific photoperiod, and high yielding varietal development of amaranth and quinoa to expand their commercial cultivation. The latest technologies that can accelerate the breeding to improve yield and quality in these crops are much behind and slower than the already established major crops of the world. We could learn from past mistakes and utilize the latest trends such as CRISPR/Cas, TILLING, and RNA interference (RNAi) technology to improve these pseudocereals genetically. Hence, the study reviewed important nutrition quality traits, morphological descriptors, their breeding behavior, available genetic resources, and breeding approaches for these crops to shed light on future breeding strategies to develop superior genotypes.

[1]  Mingguang Lei,et al.  An Agrobacterium-mediated transient expression method contributes to functional analysis of a transcription factor and potential application of gene editing in Chenopodium quinoa , 2022, Plant Cell Reports.

[2]  M. Tester,et al.  Genome-wide association study in quinoa reveals selection pattern typical for crops with a short breeding history , 2022, eLife.

[3]  S. Mayes,et al.  Genetic diversity analysis and marker-trait associations in Amaranthus species , 2022, PloS one.

[4]  Y. Yoshioka,et al.  Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. , 2022, Plant physiology and biochemistry : PPB.

[5]  Iii Congreso Argentino de Producción Caprina Mejoramiento genético , 2021, Ciencia Veterinaria.

[6]  H. Himmelbauer,et al.  Quinoa genome assembly employing genomic variation for guided scaffolding , 2021, Theoretical and Applied Genetics.

[7]  D. Schmidt,et al.  Quinoa and Amaranth as Functional Foods: A Review , 2021, Food Reviews International.

[8]  K. Schmid,et al.  Breeding Amaranth for Biomass: Evaluating Dry Matter Content and Biomass Potential in Early and Late Maturing Genotypes , 2021, Agronomy.

[9]  Z. Ning,et al.  A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop. , 2021, The Plant journal : for cell and molecular biology.

[10]  Nothando Delight Qumbisa,et al.  Potential of using amaranthus leaves to fortify instant noodles in the South African context: A review , 2020 .

[11]  S. de Folter,et al.  Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths , 2020, Plant Cell Reports.

[12]  M. V. Kuchuk,et al.  PCR analyses of first-generation plants of Amaranthus caudatus L. after «floral-dip» genetic transformation , 2020, Fiziologia rastenij i genetika.

[13]  S. Graeff‐Hönninger,et al.  Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization , 2020, Foods.

[14]  Xueyong Li,et al.  Engineering Abiotic Stress Tolerance via CRISPR-Cas mediated genome editing. , 2020, Journal of experimental botany.

[15]  K. Schmid,et al.  Parallel seed color adaptation during multiple domestication attempts of an ancient new world grain. , 2019, Molecular biology and evolution.

[16]  H. Brinch-Pedersen,et al.  Induced Genetic Variation in Crop Plants by Random or Targeted Mutagenesis: Convergence and Differences , 2019, Front. Plant Sci..

[17]  Erik Andreasson,et al.  High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato , 2019, Scientific Reports.

[18]  Xiaojun Nie,et al.  Genome‐wide microsatellite characterisation and marker development in Chenopodium quinoa , 2019, Annals of Applied Biology.

[19]  A. Fierro,et al.  Effects of saponin-rich quinoa (Chenopodium quinoa Willd.) bran and bran extract in diets of adapted and non-adapted quinoa pests in laboratory bioassays , 2019, Ciencia e investigación agraria.

[20]  M. Romero,et al.  Genetic identity based on simple sequence repeat (SSR) markers for Quinoa (Chenopodium quinoa Willd.) , 2019, Ciencia e investigación agraria.

[21]  A. Bonifacio Improvement of Quinoa (Chenopodium quinoa Willd.) and Qañawa (Chenopodium pallidicaule Aellen) in the context of climate change in the high Andes , 2019, Ciencia e investigación agraria.

[22]  M. A. Ayo-Vaughan,et al.  Genetic diversity in Amaranth (Amaranthus spp.) based on phenotypic and RAPD markers , 2019, Nigerian Journal of Biotechnology.

[23]  B. Cumming,et al.  Chenopodium * , 2019, CRC Handbook of Flowering.

[24]  A. Gajdošová,et al.  “Floral-dip” transformation of Amaranthus caudatus L. and hybrids A. caudatus × A. paniculatus L. , 2019, Biologija.

[25]  K. Edwards,et al.  Development of an Agrobacterium‐delivered CRISPR/Cas9 system for wheat genome editing , 2019, Plant biotechnology journal.

[26]  B. Kuluev,et al.  Agrobacterium-Mediated Transformation of Amaranthus cruentus L. Epicotils , 2019, Journal of Siberian Federal University. Biology.

[27]  P. J. Maughan,et al.  Quinoa Breeding and Genomics , 2018, Plant Breeding Reviews.

[28]  H. Silva,et al.  Discovery of mutations in Chenopodium quinoa Willd through EMS mutagenesis and mutation screening using pre-selection phenotypic data and next-generation sequencing , 2018, The Journal of Agricultural Science.

[29]  M. Kuchuk,et al.  Agrobacterium – caused transformation of cultivars Amaranthus caudatus L. and hybrids of A. caudatus L. x A. paniculatus L. , 2018, International Journal of Secondary Metabolite.

[30]  C. Gamboa,et al.  Smallholders’ Preferences for Improved Quinoa Varieties in the Peruvian Andes , 2018, Sustainability.

[31]  S. Graeff‐Hönninger,et al.  Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany , 2018, Agronomy.

[32]  Anil Kumar,et al.  From zero to hero: the past, present and future of grain amaranth breeding , 2018, Theoretical and Applied Genetics.

[33]  Mohamed S. Youssef,et al.  Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt , 2018, Physiology and Molecular Biology of Plants.

[34]  Alake Christopher Olusanya A multi-species assessment of genetic variability in Nigerian Amaranthus accessions: potential for improving intra- and interspecies hybridization breeding , 2018 .

[35]  Lucia Minarovičová,et al.  Quinoa - a Review , 2018 .

[36]  Wei Wang,et al.  Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat , 2018, The CRISPR journal.

[37]  Kunling Chen,et al.  Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins , 2018, Nature Protocols.

[38]  F. García-Carmona,et al.  Development of Betalain Producing Callus Lines from Colored Quinoa Varieties (Chenopodium quinoa Willd). , 2018, Journal of agricultural and food chemistry.

[39]  B. Prandi,et al.  Current Trends in Ancient Grains-Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications. , 2018, Comprehensive reviews in food science and food safety.

[40]  Tafadzwanashe Mabhaudhi,et al.  African Leafy Vegetables: A Review of Status, Production and Utilization in South Africa , 2017 .

[41]  Sydney Mavengahama,et al.  Qualitative morphological diversity of Amaranthus species , 2017 .

[42]  Jian-Kang Zhu,et al.  A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value , 2017, Cell Research.

[43]  Yul-Ho Kim,et al.  Complete Chloroplast Genome Sequences and Comparative Analysis of Chenopodium quinoa and C. album , 2017, Front. Plant Sci..

[44]  S. Engelsen,et al.  Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles , 2017 .

[45]  Ling Zhou,et al.  Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing , 2017, BMC Genomics.

[46]  T. Ramaraj,et al.  Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution , 2017, BMC Biology.

[47]  Wei Gao,et al.  Genome Editing in Cotton with the CRISPR/Cas9 System , 2017, Front. Plant Sci..

[48]  Eva Konečná,et al.  A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants[OPEN] , 2017, Plant Cell.

[49]  Morillo Coronado Ana-Cruz,et al.  Molecular characterization of Chenopodium quinoa Willd. using inter-simple sequence repeat (ISSR) markers , 2017 .

[50]  J. Coimbra,et al.  Quinoa: Nutritional, functional, and antinutritional aspects , 2017, Critical reviews in food science and nutrition.

[51]  Beum-Chang Kang,et al.  CRISPR/Cpf1-mediated DNA-free plant genome editing , 2017, Nature Communications.

[52]  E. Mikhaylova,et al.  Changes in phenotype of transgenic amaranth Amaranthus retroflexus L., overexpressing ARGOS-LIKE gene , 2017, Russian Journal of Genetics.

[53]  R. El-Salam,et al.  Molecular Differentiation of Five Quinoa (Chenopodium quinoa Willd.) Genotypes Using Inter-simple Sequence Repeat (ISSR) Markers , 2017 .

[54]  K. Schmid,et al.  Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus) , 2015, bioRxiv.

[55]  G. Libiaková,et al.  Characterization of phenotypic and nutritional properties ofvaluable Amaranthus cruentus L. mutants , 2016 .

[56]  T. Ramaraj,et al.  The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae)1 , 2016, Applications in Plant Sciences.

[57]  Wei Zhang,et al.  High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize , 2016, BMC Biotechnology.

[58]  Saubhik Das Amaranthus: A Promising Crop of Future , 2016, Springer Singapore.

[59]  Y. Fujita,et al.  Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties , 2016, DNA research : an international journal for rapid publication of reports on genes and genomes.

[60]  K. Murphy,et al.  Development of a Worldwide Consortium on Evolutionary Participatory Breeding in Quinoa , 2016, Front. Plant Sci..

[61]  M. Shahid,et al.  Quinoa for Marginal Environments: Toward Future Food and Nutritional Security in MENA and Central Asia Regions , 2016, Front. Plant Sci..

[62]  M. Marcone,et al.  Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. , 2016, Journal of agricultural and food chemistry.

[63]  Ute Roessner,et al.  The genome of Chenopodium quinoa , 2017, Nature.

[64]  Daniel F. Voytas,et al.  A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation1[OPEN] , 2015, Plant Physiology.

[65]  Wei Liu,et al.  A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. , 2015, Molecular plant.

[66]  H. Štorchová,et al.  The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. , 2015, Genetic Resources and Crop Evolution.

[67]  Md. Reyad-ul-ferdous,et al.  Present Biological Status of Potential Medicinal Plant of Amaranthus viridis: A Comprehensive Review , 2015 .

[68]  M. Maliro,et al.  Chemical and Mineral Composition of Amaranth (Amaranthus L.) Species Collected From Central Malawi , 2015 .

[69]  M. Marcone,et al.  Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species , 2015 .

[70]  J. Chung,et al.  Analysis of molecular genetic diversity and population structure in Amaranthus germplasm using SSR markers , 2014 .

[71]  L. Russo,et al.  Chemical and nutritional characterization of Chenopodium pallidicaule (cañ ihua) and Chenopodium quinoa (quinoa) seeds , 2014 .

[72]  P. Maundu,et al.  Current knowledge on Amaranthus spp.: research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa , 2014, Euphytica.

[73]  E. Espitia-Rangel,et al.  Adaptation of Cultivated Amaranth (Amaranthus spp.) and Their Wild Relatives in Mexico , 2014 .

[74]  Andrés Zurita-Silva,et al.  Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives , 2014, Molecular Breeding.

[75]  S. Shabala,et al.  Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.) , 2013 .

[76]  P. Ayiecho Quantitative studies in two grain amaranth populations using two selection methods , 2013 .

[77]  A. Das,et al.  Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens , 2013, In Vitro Cellular & Developmental Biology - Plant.

[78]  S. Abdullah,et al.  Female reproductive system of Amaranthus as the target for Agrobacterium-mediated transformation , 2013 .

[79]  S. Shukla,et al.  Amaranth: A New Millennium Crop of Nutraceutical Values , 2013, Critical reviews in food science and nutrition.

[80]  A. Vega‐Gálvez,et al.  Genetic diversity and comparison of physicochemical and nutritional characteristics of six quinoa (Chenopodium quinoa willd.) genotypes cultivated in Chile , 2012 .

[81]  J. Udall,et al.  Single Nucleotide Polymorphism Identification, Characterization, and Linkage Mapping in Quinoa , 2012 .

[82]  N. Aziz,et al.  PIGMENT ANALYSIS AND TISSUE CULTURE OF AMARANTHUS CRUENTUS L. , 2012 .

[83]  M. Džunková,et al.  Characterisation of the Amaranth Genetic Resources in the Czech Gene Bank , 2012 .

[84]  A. Bhargava,et al.  Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile , 2012, The Journal of Agricultural Science.

[85]  M. Andersen,et al.  Varietal differences of quinoa’s tolerance to saline conditions , 2012, Plant and Soil.

[86]  Janet Taylor,et al.  Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion. , 2011, Journal of agricultural and food chemistry.

[87]  S. P. Saikia,et al.  Ethnomedicinal plants used by different tribes of Arunachal Pradesh , 2011 .

[88]  Luis Puente,et al.  Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. , 2010, Journal of the science of food and agriculture.

[89]  P. Kulakow,et al.  Genetic Resources and Breeding of Amaranthus , 2010 .

[90]  P. Chand,et al.  Agrobacterium × plant factors influencing transformation of ‘Joseph's coat’ (Amaranthus tricolor L.) , 2010 .

[91]  P. Mattila,et al.  Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus) , 2010 .

[92]  E. Gallagher,et al.  Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients , 2010 .

[93]  S. Biondi,et al.  Methyl jasmonate differentially affects tocopherol content and tyrosine amino transferase activity in cultured cells of Amaranthus caudatus and Chenopodium quinoa. , 2009, Plant biology.

[94]  M. Wink,et al.  Triterpene saponins from Chenopodium quinoa Willd. , 2008, Phytochemistry.

[95]  A. Bonifacio,et al.  Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.) , 2008, Journal of Genetics.

[96]  G. C. Chinyere,et al.  Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo, Nigeria , 2007 .

[97]  H. Lou,et al.  Dietary Polyphenols and Their Biological Significance , 2007, International Journal of Molecular Sciences.

[98]  B. Pickersgill Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics , 2007, Annals of botany.

[99]  P. J. Maughan,et al.  Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers , 2007, Plant Genetic Resources.

[100]  P. Eyzaguirre,et al.  African Leafy Vegetables: Their Role in the World Health Organization’s Global Fruit and Vegetables Initiative , 2007, African Journal of Food, Agriculture, Nutrition and Development.

[101]  T. Winkel,et al.  Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers , 2007, Genetic Resources and Crop Evolution.

[102]  A. Bhargava,et al.  Genome size variation in some cultivated and wild species of Chenopodium (Chenopodiaceae) , 2007 .

[103]  A. A. Damir,et al.  Seed treatments affect functional and antinutritional properties of amaranth flours , 2006 .

[104]  P. Tranel,et al.  Acetolactate synthase mutation conferring imidazolinone-specific herbicide resistance in Amaranthus hybridus. , 2006, Journal of plant physiology.

[105]  A. Bhargava,et al.  Seed protein electrophoresis of some cultivated and wild species of Chenopodium , 2005, Biologia Plantarum.

[106]  A. Bonifacio,et al.  Development and Use of Microsatellite Markers for Germplasm Characterization in Quinoa (Chenopodium quinoa Willd.) , 2005 .

[107]  Liliana Jiménez,et al.  Dietary Polyphenols and the Prevention of Diseases , 2005, Critical reviews in food science and nutrition.

[108]  J. Prakash,et al.  Analysis of nutrient and antinutrient content of underutilized green leafy vegetables , 2005 .

[109]  H. Koyro,et al.  Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa , 2005, Plant Cell, Tissue and Organ Culture.

[110]  S. Christensen,et al.  Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms , 2005 .

[111]  A. Bonifacio,et al.  A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers , 2004, Theoretical and Applied Genetics.

[112]  Shigeru Hirano,et al.  Distribution of Minerals in Quinoa (Chenopodium quinoa Willd.) Seeds , 2004, Bioscience, biotechnology, and biochemistry.

[113]  C. R. Spehar Diferenças morfológicas entre Amaranthus cruentus, cv. BRS Alegria, e as plantas daninhas A. hybridus, A. retroflexus, A. viridis e A. spinosus , 2003 .

[114]  S. Jacobsen,et al.  Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule) , 2003 .

[115]  Sven-Erik Jacobsen,et al.  The Worldwide Potential for Quinoa (Chenopodium quinoaWilld.) , 2003 .

[116]  S. Jacobsen,et al.  The Resistance of Quinoa (Chenopodium quinoaWilld.) to Adverse Abiotic Factors , 2003 .

[117]  H N Ogungbenle,et al.  Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour , 2003, International journal of food sciences and nutrition.

[118]  C. R. Spehar,et al.  Quinoa BRS Piabiru: alternativa para diversificar os sistemas de produção de grãos , 2002 .

[119]  C. S. Huber,et al.  Composition of Atriplex hortensis, Sweet and Bitter Chenopodium quinoa Seeds , 2002 .

[120]  M. Sun,et al.  Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. , 2001, Molecular phylogenetics and evolution.

[121]  D. Skinner,et al.  Pollen morphological differences in Amaranthus species and interspecific hybrids , 2001, Weed Science.

[122]  M. Costea,et al.  Stem Morphology and Anatomy in Amaranthus L. ( Amaranthaceae )—Taxonomic Significance , 2001 .

[123]  H. Corke,et al.  Field evaluation of an Amaranthus genetic resource collection in China , 2000, Genetic Resources and Crop Evolution.

[124]  M. Otegui,et al.  Seed Structure and Localization of Reserves in Chenopodium quinoa , 1998 .

[125]  A. E. Jofre-Garfias,et al.  Agrobacterium-mediated transformation of Amaranthus hypochondriacus: light- and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter , 1997, Plant Cell Reports.

[126]  S. Schiff,et al.  Studies on callus growth and morphogenesis in several species and lines of t Amaranthus , 1997, Plant Cell, Tissue and Organ Culture.

[127]  B. Delbreil,et al.  Evidence for in vitro induced mutation which improves somatic embryogenesis in Asparagus officinalis L. , 1994, Plant Cell Reports.

[128]  J. Ruales,et al.  Properties of starch and dietary fibre in raw and processed quinoa (Chenopodium quinoa, Willd) seeds , 1994, Plant foods for human nutrition.

[129]  I. Zacarías,et al.  [Chemical and nutritional characterization of amaranthus (Amaranthus cruentus)]. , 1994, Archivos latinoamericanos de nutricion.

[130]  S. Sopory,et al.  Development of secondary inflorescences and in vitro plantlets from inflorescence cultures of Amaranthus paniculatus , 1993, Plant Cell Reports.

[131]  N. Galwey The potential of quinoa as a multi-purpose crop for agricultural diversification: a review , 1992 .

[132]  M. J. Kozioł,et al.  Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.) , 1992 .

[133]  Shela Gorinstein,et al.  Evaluation Of Four Amaranthus Species Through Protein Electrophoretic Patterns And Their Amino Acid Composition , 1991 .

[134]  H. D. Wilson Quinua and Relatives (Chenopodium sect.Chenopodium subsect.Celluloid) , 1990, Economic Botany.

[135]  D. Fairbanks,et al.  Electrophoretic Characterization of Quinoa Seed Proteins , 1990 .

[136]  F. Prado,et al.  Quantitative determinations of chemical compounds with nutritional value from inca crops:Chenopodium quinoa (‘quinoa’) , 1989, Plant foods for human nutrition.

[137]  H. D. Wilson Quinua biosystematics I: Domesticated populations , 1988, Economic Botany.

[138]  H. D. Wilson Allozyme Variation and Morphological Relationships of Chenopodium hircinum (s.l.) , 1988 .

[139]  U. Eliasson Floral morphology and taxonomic relations among the genera of Amaranthaceae in the New World and the Hawaiian Islands , 1988 .

[140]  B. Tisserat,et al.  In Vitro Flowering in Amaranthus , 1988, HortScience.

[141]  P. Kulakow Genetics of grain amaranths. II. The inheritance of determinance, panicle orientation, dwarfism, and embryo color in Amaranthus caudatus. , 1987, The Journal of heredity.

[142]  S. Jain,et al.  Genetics of grain amaranths III. Gene-cytoplasmic male sterility , 1987 .

[143]  R. Bressani,et al.  Digestibility and protein quality of raw and heat-processed defatted and nondefatted flours prepared with three amaranth species , 1987 .

[144]  S. Sopory,et al.  In vitro regeneration of plants from hypocotyl segments of Amaranthus paniculatus , 1987, Plant Cell Reports.

[145]  S. Jain,et al.  Genetics of grain amaranths , 1987, Theoretical and Applied Genetics.

[146]  S. Jain,et al.  Response to Mass Selection for Plant Height and Grain Yield in Amaranth (Amaranthus spp.) , 1987 .

[147]  S. Jain,et al.  The inheritance of flowering time inAmaranthus species , 1985, Journal of Genetics.

[148]  K. Okuno,et al.  Characterization of Starch Granules from Waxy, Nonwaxy, and Hybrid Seeds of Amaranthus hypochondriacus L. , 1985 .

[149]  M. Bhandari,et al.  Medico-ethno botany of Mount Abu, Rajasthan, India. , 1984, Journal of ethnopharmacology.

[150]  R. Pandey Genetic studies of yield contributing traits in Amaranthus , 1984, Theoretical and Applied Genetics.

[151]  K. Okuno,et al.  Inheritance of starch characteristics in perisperm of Amaranthus hypochondriacus , 1982 .

[152]  T. N. Khoshoo,et al.  Evolution and improvement of cultivated amaranths IX. Cytogenetic relationship between the two basic chromosome numbers , 1982 .

[153]  A. Galston,et al.  IN VITRO CULTURE OF GRAIN AND VEGETABLE AMARANTHS (AMARANTHUS SPP.) , 1982 .

[154]  R. Saunders,et al.  Amaranthus Cruentus: Milling Characteristics, Distribution of Nutrients within Seed Components, and the Effects of Temperature on Nutritional Quality , 1981 .

[155]  J. Ley,et al.  The host range of crown gall , 1976, The Botanical Review.

[156]  T. N. Khoshoo,et al.  Evolution and Improvement of Cultivated Amaranths V. Inviability, weakness, and sterility in hybrids , 1972 .

[157]  N. Simmonds The grain chenopods of the tropical American highlands , 1965, Economic Botany.

[158]  M. Pal Chromosome numbers in some Indian angiosperms—I , 1964, Proceedings / Indian Academy of Sciences.

[159]  A. Bruin,et al.  Investigation of the food value of quinua and canihua seed. , 1964 .

[160]  W. Grant CYTOGENETIC STUDIES IN AMARANTHUS.: III. Chromosome numbers and phylogenetic aspects , 1959 .

[161]  J. Sauer RECENT MIGRATION AND EVOLUTION OF THE DIOECIOUS AMARANTHS , 1957 .

[162]  J. Sauer The grain amaranths : a survey of their history and classification. , 1950 .

[163]  Carl L. Wilson Medullary Bundle in Relation to Primary Vascular System in Chenopodiaceae and Amaranthaceae , 1924, Botanical Gazette.

[164]  J. P. Rodríguez,et al.  Quinoa—Evolution and Future Perspectives , 2021 .

[165]  Jie Liu Quinoa , 2019, Bioactive Factors and Processing Technology for Cereal Foods.

[166]  B. Kuluev,et al.  OBTAINING HAIRY ROOTS OF AMARANTHUS CRUENTUS L. AND EVALUATION OF THEIR GROWTH INDICATORS , 2019, ÈKOBIOTEH.

[167]  A. Kaur,et al.  Control of insect pests in crop plants and stored food grains using plant saponins: A review , 2018 .

[168]  Murugan Establishment of High Frequency Callus induction and Genetic Transformation in Neglected Leafy Vegetable Amaranthus trisis , 2016 .

[169]  Xiaolin Zhang,et al.  Exploration and Transferability Evaluation of EST-SSRs in Quinoa , 2016 .

[170]  N. Chrungoo,et al.  Species relationships in Chenopodium quinoa and Chenopodium album on the basis of morphology and SDS-PAGE profiles of soluble seed proteins - , 2015 .

[171]  Luis A. Del Vitto,et al.  Revista de la Facultad de Ciencias Agrarias , 2015 .

[172]  O. P. Dutta,et al.  Amaranth sprouts and microgreens - a homestead vegetable production option to enhance food and nutrition security in the rural-urban continuum. , 2015 .

[173]  D. Prakash,et al.  Phytochemicals of nutraceutical importance: do they defend against diseases? , 2014 .

[174]  Quinoa-A Promising New Crop for the Arabian Peninsula NK , 2013 .

[175]  A. Qayyum,et al.  GENETIC DIVERGENCE IN AMARANTHUS COLLECTED FROM PAKISTAN , 2012 .

[176]  R. Pandey,et al.  Genetic divergence in grain amaranth (Amaranthus hypochondriacus L.) , 2011 .

[177]  M. Shoko,et al.  Nutrient Content of Amaranth (Amaranthus cruentus L.) Under Different Processing and Preservation Methods , 2010 .

[178]  I. Fomsgaard,et al.  Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality , 2009 .

[179]  F. Bavec,et al.  Nutrition value and use of grain amaranth: potential future application in bread making , 2009 .

[180]  Hossain,et al.  An ethnobotanical survey of Rajshahi district in Rajshahi division , Bangladesh , 2009 .

[181]  Lilian E Abugoch James Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. , 2009, Advances in food and nutrition research.

[182]  D. Pearsall Plant Domestication and the Shift to Agriculture in the Andes , 2008 .

[183]  J. Alfredo.,et al.  funcionais do Amaranto ( Amaranthus spp . ) Nutritional and functional characteristics of Amaranth ( Amaranthus spp . ) , 2007 .

[184]  M. Linder,et al.  Extraction, chemical composition and nutrional characterization of vegetable oils: Case of Amaranthus hybridus (var 1 and 2) of Congo Brazzaville , 2006 .

[185]  A. Bhargava,et al.  Chenopodium quinoa - an Indian perspective , 2006 .

[186]  S. Jain,et al.  Genetic variation in outcrossing rate and correlated floral traits in a population of grain amaranth (Amaranthus cruentus L.) , 2004, Genetica.

[187]  S. Schiff,et al.  In vitro culture of species and varieties of four Amaranthus L. species , 2004, Euphytica.

[188]  V. Gupta,et al.  Male-sterility in the grain amaranth (Amaranthus hypochondriacus ex-Nepal) variety Jumla , 2004, Euphytica.

[189]  P. Ruas,et al.  Genetic relationship among 19 accessions of six species of Chenopodium L., by Random Amplified Polymorphic DNA fragments (RAPD) , 2004, Euphytica.

[190]  A. Bhargava,et al.  Genetic variability and heritability of selected traits during different cuttings of vegetable Chenopodium , 2003 .

[191]  A. Bhargava,et al.  Genetic association in Chenopodium , 2003 .

[192]  A. Svirskis Investigation of amaranth cultivation and utilisation in Lithuania , 2003 .

[193]  D. Prakash,et al.  Chenopodium: seed protein, fractionation and amino acid composition , 1998 .

[194]  M. Pal,et al.  Cytopalynology of Amaranthus L. and Chenopodium L. – The two pantoporate taxa , 1997 .

[195]  B. Turner Chromosome Numbers and Their Phyletic Interpretation , 1994 .

[196]  K. Peter,et al.  Amaranth: Amarathus spp. , 1993 .

[197]  R. Tkachuk,et al.  Nutrients and antinutrients in quinoa seed. , 1992 .

[198]  A. Sánchez-Marroquín,et al.  Chemical composition of grain amaranth cultivars and effects of processing on their nutritional quality , 1992 .

[199]  L. Rastrelli,et al.  A compositional study of Chenopodium quinoa seeds , 1992 .

[200]  L. Kalinowski,et al.  Grain amaranth research in Peru , 1992 .

[201]  N. Galwey,et al.  Chenopodium grains of the Andes: a crop for temperate latitudes. , 1989 .

[202]  J. Lembcke,et al.  Nutritional value for young children of grain amaranth and maize-amaranth mixtures: effect of processing. , 1988, The Journal of nutrition.

[203]  H. E. Flores,et al.  Amaranths (Amaranthus spp.): Potential Grain and Vegetable Crops , 1986 .

[204]  Y. Hwang,et al.  Lipids in amaranths , 1985 .

[205]  S. Jain,et al.  Genetics of grain amaranths I. Mendelian analysis of six color characteristics , 1985 .

[206]  D. Knorr,et al.  Amaranth: Composition, properties, and applications of a rediscovered food crop , 1985 .

[207]  R. Locy,et al.  Plant Regeneration from Tissue Cultures of Amaranthus Species , 1985 .

[208]  K. Lorenz,et al.  Phytate and tannin content of amaranth , 1984 .

[209]  L. A. Stone,et al.  The Starch of Amaranthus — Physico‐chemical Properties and Functional Characteristics , 1984 .

[210]  M. Pal,et al.  Heterotic effect for protein content in Amaranthus hypochondriacus L. , 1980 .

[211]  M. Pal Intraspecific aneuploidy in Amaranthus graecizans , 1972 .

[212]  P. D. Walton The Use of Amaranthus caudatus in Simulating the Breeding Behavior of Commercial Gossypium Species , 1968 .