Coupled nanopillar waveguides optical properties and applications

In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection, while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  K. Busch,et al.  Semiclassical theory of lasing in photonic crystals , 2002 .

[2]  M. Notomi,et al.  Waveguides, resonators and their coupled elements in photonic crystal slabs. , 2004, Optics express.

[3]  R. März,et al.  Spectral properties of asymmetrical optical directional couplers with periodic structures , 1987 .

[4]  J. Marti,et al.  Ultrashort 2-D photonic crystal directional couplers , 2003, IEEE Photonics Technology Letters.

[5]  Shanhui Fan,et al.  Guided and defect modes in periodic dielectric waveguides , 1995 .

[6]  문정진 § 19 , 2000 .

[7]  Yong-Hee Lee,et al.  Nonlinear dispersive three-dimensional finite-difference time-domain analysis for photonic-crystal lasers. , 2005, Optics express.

[8]  Ian J. Spalding,et al.  Laser physics , 1977, Nature.

[9]  M. Raymer,et al.  Multimode laser model with coupled cavities and quantum noise , 1997 .

[10]  Andrei Lavrinenko,et al.  Nanopillars photonic crystal waveguides. , 2004, Optics express.

[11]  Steven G. Johnson,et al.  Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap , 2001 .

[12]  Thomas P. Pearsall,et al.  Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides , 2002 .

[13]  Yoshimasa Sugimoto,et al.  Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length. , 2004, Optics express.

[14]  Yasuhiko Arakawa,et al.  1.5-μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab , 2004 .

[15]  Switchable lasing in multimode microcavities. , 2007, Physical review letters.

[16]  P. Yang,et al.  Single Nanowire Lasers. , 2002 .

[17]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[18]  W. Lempert,et al.  Enhancement of spectral purity of injection-seeded titanium:sapphire laser by cavity locking and stimulated Brillouin scattering. , 2003, Applied optics.

[19]  Jiang,et al.  Time dependent theory for random lasers , 2000, Physical review letters.

[20]  A. Taflove,et al.  Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. , 2004, Optics express.

[21]  Henri Benisty,et al.  Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate , 2000 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Steven G. Johnson,et al.  Guiding 1.5 μm light in photonic crystals based on dielectric rods , 2004 .

[24]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[25]  Clivia M. Sotomayor Torres,et al.  Numerical characterization of nanopillar photonic crystal waveguides and directional couplers , 2005 .

[26]  P. Yang,et al.  Single Nanowire Lasers , 2001 .

[27]  R. Ellingsen,et al.  Computer simulations of bistable dynamics of a two-mode laser with symmetric or asymmetric gain conditions , 1991 .

[28]  Sergei V. Zhukovsky,et al.  Low-loss resonant modes in deterministically aperiodic nanopillar waveguides , 2006 .

[29]  Steven G. Johnson,et al.  Linear waveguides in photonic-crystal slabs , 2000 .

[30]  Shouyuan Shi,et al.  Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides. , 2003, Optics express.

[31]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[32]  J. Arnold,et al.  FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Leon Poladian,et al.  Antisymmetric grating coupler: experimental results. , 2003, Applied optics.

[34]  Guido Perrone,et al.  Design and feasibility analysis of an innovative integrated grating-assisted add-drop multiplexer , 2001 .

[35]  S. V. Zhukovsky,et al.  Selective lasing in multimode periodic and non‐periodic nanopillar waveguides , 2007 .

[36]  A. Nagra,et al.  FDTD analysis of wave propagation in nonlinear absorbing and gain media , 1998 .

[37]  Andrew G. Glen,et al.  APPL , 2001 .

[38]  Wei-Ping Huang Coupled-mode theory for optical waveguides: an overview , 1994 .

[39]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[40]  Steven G. Johnson,et al.  Single-photon all-optical switching using waveguide-cavity quantum electrodynamics , 2006 .

[41]  Jeremy Witzens,et al.  Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[42]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[43]  C. G. Someda,et al.  Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides , 2002 .

[44]  Gérard Tayeb,et al.  Self-guiding in two-dimensional photonic crystals. , 2003, Optics express.

[45]  E. Schonbrun,et al.  Negative refraction in a Si-polymer photonic Crystal membrane , 2005, IEEE Photonics Technology Letters.

[46]  Alfred Forchel,et al.  Photonic crystal waveguide directional couplers as wavelength selective optical filters , 2004 .

[47]  H. Chong,et al.  Comprehensive FDTD modelling of photonic crystal waveguide components. , 2004, Optics express.

[48]  Optical bistability in coupled‐cavity semiconductor lasers , 1984 .