An approach to use linguistic and model-based fuzzy expert knowledge for the analysis of MRT images

Abstract Processing of medical image data is much more difficult than industrial image processing resulting from the higher degree of variability. However the improvement of the already existing technique and the development of new imaging techniques as well as the widespread availability of recording devices (e.g. CTs and MRTs) emphasize the importance of this application field worldwide. Although the image quality increases steadily, data contains different kinds of uncertainties and variabilities that have to be handled in computerized analysis. In this paper the handling of such kinds of variabilities by using iconic fuzzy sets for the description and recognition of anatomical structures in magnetic resonance tomograms (MRT, MRI) of human heads will be presented.

[1]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Azriel Rosenfeld,et al.  Fuzzy Digital Topology , 1979, Inf. Control..

[3]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[4]  Ute St. Clair,et al.  Fuzzy Set Theory: Foundations and Applications , 1997 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Rainer Herpers,et al.  Wissensbasierte Bildverarbeitung , 1996, Bildverarbeitung für die Medizin.

[7]  Thomas Martin Deserno,et al.  Bildverarbeitung für die Medizin: Grundlagen, Modelle, Methoden, Anwendungen , 1997, Bildverarbeitung für die Medizin.

[8]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[9]  Jerry W. Froelich Nuclear Magnetic Resonance (NMR) Imaging , 1984 .

[10]  Timothy Poston,et al.  Fuzzy Hough transform , 1994, Pattern Recognit. Lett..

[11]  Hans-Peter Meinzer,et al.  Bildverarbeitung für die Medizin 1999 , 1999 .

[12]  Deryn Graham,et al.  Knowledge-based image processing systems , 1997, Applied computing.

[13]  Lucien Duckstein,et al.  Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems , 1995 .

[14]  William Stanford,et al.  The fuzzy Hough transform-feature extraction in medical images , 1994, IEEE Trans. Medical Imaging.

[15]  Igor N. Aizenberg Neural Networks Based on Multi-valued and Universal Binary Neurons: Theory, Application to Image Processing and Recognition , 1999, Fuzzy Days.

[16]  Naum N. Aizenberg,et al.  CNN-like networks based on multi-valued and universal binary neurons: learning and application to image processing , 1994, Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94).

[17]  Wido Menhardt Unscharfe Mengen (Fuzzy Sets) zur Behandlung von Unsicherheit in der Bildanalyse , 1990 .

[18]  Peter J. McDonald,et al.  Nuclear magnetic resonance NMR imaging , 1983 .

[19]  Hans-Paul Schwefel,et al.  Evolving solutions for design and management tasks on computers , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[20]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[21]  Yoshiyasu Takefuji,et al.  Knowledge-Based Intelligent Techniques in Industry , 1998 .

[22]  Hamid R. Tizhoosh,et al.  Theorie der Fuzzy-Bildverarbeitung , 1998 .

[23]  J. Hiltner,et al.  A new fuzzy based flood-fill algorithm for 3D NMR brain segmentation , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).