A chromosome-scale assembly of the major African malaria vector Anopheles funestus

Background Anopheles funestus is one of the three most consequential and widespread vectors of human malaria in tropical Africa. However, the lack of a high-quality reference genome has hindered the association of phenotypic traits with their genetic basis in this important mosquito. Findings Here we present a new high-quality An. funestus reference genome (AfunF3) assembled using 240x coverage of long-read single-molecule sequencing for contigging, combined with 100x coverage of short-read Hi-C data for chromosome scaffolding. The assembled contigs total 446 Mbp of sequence and contain substantial duplication due to alternative alleles present in the sequenced pool of mosquitos from the FUMOZ colony. Using alignment and depth-of-coverage information, these contigs were deduplicated to a 211 Mbp primary assembly, which is closer to the expected haploid genome size of 250 Mbp. This primary assembly consists of 1,053 contigs organized into 3 chromosome-scale scaffolds with an N50 contig size of 632 kbp and an N50 scaffold size of 93.811 Mbp, representing a 100-fold improvement in continuity versus the current reference assembly, AfunF1. Conclusion This highly contiguous and complete An. funestus reference genome assembly will serve as an improved basis for future studies of genomic variation and organization in this important disease vector.

[1]  Simo V. Zhang,et al.  Association mapping desiccation resistance within chromosomal inversions in the African malaria vector Anopheles gambiae , 2018, Molecular ecology.

[2]  Sergey Koren,et al.  Improved reference genome of Aedes aegypti informs arbovirus vector control , 2018, Nature.

[3]  Sergey Koren,et al.  Leveraging evolutionary relationships to improve Anopheles genome assemblies , 2018, bioRxiv.

[4]  Sergey Koren,et al.  De novo assembly of haplotype-resolved genomes with trio binning , 2018, Nature Biotechnology.

[5]  John C. Tan,et al.  Systems genetic analysis of inversion polymorphisms in the malaria mosquito Anopheles gambiae , 2018, Proceedings of the National Academy of Sciences.

[6]  Christophe Klopp,et al.  D-GENIES: dot plot large genomes in an interactive, efficient and simple way , 2018, PeerJ.

[7]  D. Weetman,et al.  Copy number variation (CNV) and insecticide resistance in mosquitoes: evolving knowledge or an evolving problem? , 2018, Current opinion in insect science.

[8]  P. Awono-ambene,et al.  Elevated Plasmodium infection rates and high pyrethroid resistance in major malaria vectors in a forested area of Cameroon highlight challenges of malaria control , 2018, Parasites & Vectors.

[9]  A. M. Seasonal variations in indoor resting " Anopheles gambiae " and " Anopheles arabiensis " in Kaduna , Nigeria , 2018 .

[10]  Robert M. Waterhouse,et al.  BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics , 2017, bioRxiv.

[11]  Michael C. Schatz,et al.  Accurate detection of complex structural variations using single molecule sequencing , 2017, Nature Methods.

[12]  Kenneth D Vernick,et al.  The Anopheles gambiae 2La chromosome inversion is associated with susceptibility to Plasmodium falciparum in Africa , 2017, eLife.

[13]  C. Wondji,et al.  Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa , 2017, G3: Genes, Genomes, Genetics.

[14]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[15]  F. Simard,et al.  Chromosome inversions and ecological plasticity in the main African malaria mosquitoes , 2017, Evolution; international journal of organic evolution.

[16]  Anna-Sophie Fiston-Lavier,et al.  The ace-1 Locus Is Amplified in All Resistant Anopheles gambiae Mosquitoes: Fitness Consequences of Homogeneous and Heterogeneous Duplications , 2016, PLoS biology.

[17]  C. Antonio-Nkondjio,et al.  Multiple Insecticide Resistance in the Malaria Vector Anopheles funestus from Northern Cameroon Is Mediated by Metabolic Resistance Alongside Potential Target Site Insensitivity Mutations , 2016, PloS one.

[18]  Eleazar Eskin,et al.  The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis , 2016, PLoS genetics.

[19]  James T. Robinson,et al.  Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. , 2016, Cell systems.

[20]  M. Sharakhova,et al.  Heterochromatin, histone modifications, and nuclear architecture in disease vectors. , 2015, Current opinion in insect science.

[21]  J. Landolin,et al.  Assembling large genomes with single-molecule sequencing and locality-sensitive hashing , 2014, Nature Biotechnology.

[22]  Serafim Batzoglou,et al.  Read clouds uncover variation in complex regions of the human genome , 2015, RECOMB.

[23]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[24]  D. Houle,et al.  Linkage Disequilibrium and Inversion-Typing of the Drosophila melanogaster Genome Reference Panel , 2015, G3: Genes, Genomes, Genetics.

[25]  James E. Allen,et al.  Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes , 2014, Science.

[26]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[27]  Adam M Phillippy,et al.  Long-read, whole-genome shotgun sequence data for five model organisms , 2014, Scientific Data.

[28]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[29]  S. Manguin Anopheles mosquitoes : New insights into malaria vectors , 2013 .

[30]  Diego Ayala,et al.  Advances and Perspectives in the Study of the Malaria Mosquito Anopheles funestus , 2013 .

[31]  Scott J. Emrich,et al.  The Evolution of the Anopheles 16 Genomes Project , 2013, G3: Genes, Genomes, Genetics.

[32]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[33]  M. Coetzee,et al.  Molecular systematics and insecticide resistance in the major African malaria vector Anopheles funestus. , 2013, Annual review of entomology.

[34]  P. O’Reilly,et al.  The Effect of Genomic Inversions on Estimation of Population Genetic Parameters from SNP Data , 2013, Genetics.

[35]  R. Gibbs,et al.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology , 2012, PloS one.

[36]  Christopher I. Amos,et al.  Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis , 2012, PloS one.

[37]  Nora J. Besansky,et al.  Adaptation to Aridity in the Malaria Mosquito Anopheles gambiae: Chromosomal Inversion Polymorphism and Body Size Influence Resistance to Desiccation , 2012, PloS one.

[38]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[39]  J. Dujardin,et al.  Chromosomal and environmental determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[40]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[41]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[42]  M. Kirkpatrick How and Why Chromosome Inversions Evolve , 2010, PLoS biology.

[43]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[44]  N. Besansky,et al.  Seasonal distribution of Anopheles funestus chromosomal forms from Burkina Faso , 2009, Malaria Journal.

[45]  N. Besansky,et al.  Inversion 2La is associated with enhanced desiccation resistance in Anopheles gambiae , 2009, Malaria Journal.

[46]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[47]  N. Besansky,et al.  2La chromosomal inversion enhances thermal tolerance of Anopheles gambiae larvae , 2009, Malaria Journal.

[48]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[49]  N. Besansky,et al.  Chromosomal plasticity and evolutionary potential in the malaria vector Anopheles gambiae sensu stricto: insights from three decades of rare paracentric inversions , 2008, BMC Evolutionary Biology.

[50]  N. Besansky,et al.  Chromosomal evidence of incipient speciation in the Afrotropical malaria mosquito Anopheles funestus , 2005, Medical and veterinary entomology.

[51]  J. Vulule,et al.  Rangewide population genetic structure of the African malaria vector Anopheles funestus , 2005, Molecular ecology.

[52]  M. Kern,et al.  Molecular differentiation between chromosomally defined incipient species of Anopheles funestus , 2005, Insect molecular biology.

[53]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[54]  M. Coetzee,et al.  Advances in the study of Anopheles funestus, a major vector of malaria in Africa. , 2004, Insect biochemistry and molecular biology.

[55]  N. Besansky,et al.  A microsatellite map of the African human malaria vector Anopheles funestus. , 2004, The Journal of heredity.

[56]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[57]  A. della Torre,et al.  A Polytene Chromosome Analysis of the Anopheles gambiae Species Complex , 2002, Science.

[58]  M. Coluzzi,et al.  Cytogenetics of the Anopheles gambiae complex in Sudan, with special reference to An. arabiensis: relationships with East and West African populations , 2000, Medical and veterinary entomology.

[59]  C. Costantini,et al.  Chromosomal and bionomic heterogeneities suggest incipient speciation in Anopheles funestus from Burkina Faso. , 1999, Parassitologia.

[60]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[61]  J. Beier,et al.  Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya. , 1992, The American journal of tropical medicine and hygiene.

[62]  M. Coluzzi,et al.  Seasonal variations in indoor resting Anopheles gambiae and Anopheles arabiensis in Kaduna, Nigeria. , 1985, Acta tropica.

[63]  M. Coluzzi,et al.  Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. , 1979, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[64]  M. Gillies.,et al.  The Anophelinae of Africa South of the Sahara , 1968 .