Hexagonal Hybrid Bismuthene by Molecular Interface Engineering

High-quality devices based on layered heterostructures are typically built from materials obtained by complex solid-state physical approaches or laborious mechanical exfoliation and transfer. Meanwhile, wet-chemically synthesized materials commonly suffer from surface residuals and intrinsic defects. Here, we synthesize using an unprecedented colloidal photocatalyzed, one-pot redox reaction a few-layers bismuth hybrid of “electronic grade” structural quality. Intriguingly, the material presents a sulfur-alkyl-functionalized reconstructed surface that prevents it from oxidation and leads to a tuned electronic structure that results from the altered arrangement of the surface. The metallic behavior of the hybrid is supported by ab initio predictions and room temperature transport measurements of individual nanoflakes. Our findings indicate how surface reconstructions in two-dimensional (2D) systems can promote unexpected properties that can pave the way to new functionalities and devices. Moreover, this scalable synthetic process opens new avenues for applications in plasmonics or electronic (and spintronic) device fabrication. Beyond electronics, this 2D hybrid material may be of interest in organic catalysis, biomedicine, or energy storage and conversion.

[1]  G. Abellán,et al.  Chemistry of two-dimensional pnictogens: emerging post-graphene materials for advanced applications. , 2023, Chemical communications.

[2]  G. Abellán,et al.  Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine , 2023, Chemical Society reviews.

[3]  E. Michel,et al.  Preparation of high-quality few-layers bismuthene hexagons , 2022, Applied Materials Today.

[4]  C. Gómez-Navarro,et al.  Continuous‐Flow Synthesis of High‐Quality Few‐Layer Antimonene Hexagons , 2021, Advanced Functional Materials.

[5]  Gen Li,et al.  Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. , 2021, Journal of the American Chemical Society.

[6]  D. Onwudiwe,et al.  The performance of bismuth-based compounds in photocatalytic applications , 2021 .

[7]  Jong Seung Kim,et al.  Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. , 2020, Chemical Society reviews.

[8]  G. Abellán,et al.  Phonon properties and photo-thermal oxidation of micromechanically exfoliated antimonene nanosheets , 2020, 2D Materials.

[9]  D. Jariwala,et al.  An outlook into the flat land of 2D materials beyond graphene: synthesis, properties and device applications , 2020, 2D Materials.

[10]  J. Jia,et al.  Discovery of segmented Fermi surface induced by Cooper pair momentum , 2020, Science.

[11]  A. L. da Rosa,et al.  Electronic Properties and Charge Transfer of Topologically Protected States in Hybrid Bismuthene Layers , 2020 .

[12]  A. Hirsch,et al.  Mechanical cleaning of graphene using in situ electron microscopy , 2020, Nature Communications.

[13]  M. Pumera,et al.  Advances of 2D bismuth in energy sciences. , 2019, Chemical Society reviews.

[14]  J. Qu,et al.  Solution-Phase Synthesis of Few-Layer Hexagonal Antimonene Nanosheets via Anisotropic Growth. , 2019, Angewandte Chemie.

[15]  L. Fu,et al.  Topology on a new facet of bismuth , 2019, Proceedings of the National Academy of Sciences.

[16]  Claire Deeb,et al.  Optical properties of bismuth nanostructures towards the ultrathin film regime , 2019, Optical Materials Express.

[17]  F. Xia,et al.  Plasmonics in Atomically Thin Crystalline Silver Films. , 2019, ACS nano.

[18]  Mathieu Kociak,et al.  Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments , 2018, Nature Physics.

[19]  H. Steinrück,et al.  Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters , 2019, Nature Communications.

[20]  G. Mussler,et al.  Oxide removal and stabilization of bismuth thin films through chemically bound thiol layers , 2018, RSC advances.

[21]  V. Pruneri,et al.  Tunable plasmons in ultrathin metal films , 2018, Nature Photonics.

[22]  H. Griesser,et al.  XPS Study of Sulfur and Phosphorus Compounds with Different Oxidation States , 2018, Sains Malaysiana.

[23]  Binghai Yan,et al.  Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers , 2018 .

[24]  M. Vergniory,et al.  Higher-Order Topology in Bismuth , 2018, Nature Physics.

[25]  D. Duong,et al.  van der Waals Layered Materials: Opportunities and Challenges. , 2017, ACS Nano.

[26]  Martin Pumera,et al.  Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. , 2017, Angewandte Chemie.

[27]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[28]  T. Ezquerra,et al.  Unveiling the Far Infrared-to-Ultraviolet Optical Properties of Bismuth for Applications in Plasmonics and Nanophotonics , 2017 .

[29]  A. Corma,et al.  The wet synthesis and quantification of ligand-free sub-nanometric Au clusters in solid matrices. , 2017, Chemical communications.

[30]  Wenhui Wang,et al.  Two-dimensional antimonene single crystals grown by van der Waals epitaxy , 2016, Nature Communications.

[31]  Wei Li,et al.  Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films. , 2016, Nano letters.

[32]  H. Su,et al.  Phosphorene: from theory to applications , 2016 .

[33]  Gang Li,et al.  Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material , 2016, Science.

[34]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[35]  A. Corma,et al.  Beyond acid strength in zeolites: soft framework counteranions for stabilization of carbocations on zeolites and its implication in organic synthesis. , 2015, Angewandte Chemie.

[36]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[37]  Ulrich Hohenester,et al.  Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures , 2014, Comput. Phys. Commun..

[38]  Marcel Demarteau,et al.  Ambipolar phosphorene field effect transistor. , 2014, ACS nano.

[39]  R. Lewis,et al.  In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of beta-Bi2O3 microislands , 2014 .

[40]  Kun Yang,et al.  Evidence of topological two-dimensional metallic surface states in thin bismuth nanoribbons. , 2014, ACS nano.

[41]  Ulrich Hohenester,et al.  Simulating electron energy loss spectroscopy with the MNPBEM toolbox , 2013, Comput. Phys. Commun..

[42]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[43]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[44]  J. Toudert,et al.  Exploring the Optical Potential of Nano-Bismuth: Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range , 2012 .

[45]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[46]  S. Devillers,et al.  1-Dodecanethiol self-assembled monolayers on cobalt. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[47]  Ulrich Hohenester,et al.  MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles , 2011, Comput. Phys. Commun..

[48]  M. Ibarra,et al.  Role of the surface states in the magnetotransport properties of ultrathin bismuth films , 2010 .

[49]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  Jin-Han Lin,et al.  Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films , 2008 .

[51]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[52]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[53]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[54]  S. Gmouh,et al.  Activation of bismuth(III) derivatives in ionic liquids: novel and recyclable catalytic systems for Friedel-Crafts acylation of aromatic compounds. , 2003, Organic letters.

[55]  I. Favier,et al.  Oxidation of mandelic acid derivatives catalysed by Bi(0)/O2 systems: mechanistic considerations , 2003 .

[56]  C. Ast,et al.  Fermi surface of Bi(111) measured by photoemission spectroscopy. , 2001, Physical review letters.

[57]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[58]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[59]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[60]  M. Zerner,et al.  A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries , 1985 .

[61]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[62]  Marvin L. Cohen,et al.  Special Points in the Brillouin Zone , 1973 .

[63]  D. M. Treherne,et al.  Optical Properties of Antimony and Bismuth Crystals. , 1965 .