Rapid Prolate Pseudospectral Differentiation and Interpolation with the Fast Multipole Method
暂无分享,去创建一个
[1] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[2] Richard Baltensperger,et al. Spectral Differencing with a Twist , 2002, SIAM J. Sci. Comput..
[3] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[4] L. Trefethen,et al. Stability of the method of lines , 1992, Spectra and Pseudospectra.
[5] D. Slepian. Some comments on Fourier analysis, uncertainty and modeling , 1983 .
[6] J. Boyd. Multipole expansions and pseudospectral cardinal functions: A new generalization of the fast fourier transform , 1992 .
[7] L. Carin,et al. Pseudospectral method based on prolate spheroidal wave functions for frequency-domain electromagnetic simulations , 2005, IEEE Transactions on Antennas and Propagation.
[8] D. Gottlieb,et al. Numerical analysis of spectral methods , 1977 .
[9] L. Trefethen. Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations , 1996 .
[10] V. Rokhlin,et al. Prolate spheroidal wavefunctions, quadrature and interpolation , 2001 .
[11] L. Trefethen,et al. Stiffness of ODEs , 1993 .
[12] Leslie Greengard,et al. The numerical solution of the N-body problem , 1990 .
[13] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[14] Lloyd N. Trefethen,et al. Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues , 1990 .
[15] Gilbert G. Walter,et al. Prolate Spheroidal Wave Functions and Wavelets , 2006 .
[16] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .
[17] V. Rokhlin,et al. Fast algorithms for polynomial interpolation, integration, and differentiation , 1996 .
[18] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[19] John P. Boyd,et al. Algorithm 840: computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions---prolate elements , 2005, TOMS.
[20] L. Trefethen,et al. An Instability Phenomenon in Spectral Methods , 1987 .
[21] G. Beylkin,et al. Wave propagation using bases for bandlimited functions , 2005 .
[22] J. Boyd. Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms , 2004 .
[23] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .
[24] Jan S. Hesthaven,et al. Spectral Methods Based on Prolate Spheroidal Wave Functions for Hyperbolic PDEs , 2005, SIAM J. Numer. Anal..
[25] C. Bouwkamp. On Spheroidal Wave Functions of Order Zero , 1947 .
[26] Leslie Greengard,et al. Spectral integration and two-point boundary value problems , 1991 .