Hybrid Modelling and Optimization of the Oblique Cutting of AISI 1045 Steel

ACM Digital Library; Bacon’s Media Directory; Cabell’s Directories; DBLP; Google Scholar; INSPEC; JournalTOCs; MediaFinder; ProQuest Engineering Journals; ProQuest Illustrata: Technology; ProQuest Materials Science Journals; ProQuest SciTech Journals; ProQuest Technology Journals; SCOPUS; The Standard Periodical Directory; Ulrich’s Periodicals Directory; Web of Science; Web of Science Emerging Sources Citation Index (ESCI) Research Articles

[1]  Shapour Azarm,et al.  Constraint handling improvements for multiobjective genetic algorithms , 2002 .

[2]  Jaber Abu Qudeiri,et al.  Multi-objective optimization of oblique turning operations using finite element model and genetic algorithm , 2014 .

[3]  Fritz Klocke,et al.  Analytical temperature prediction for cutting steel , 2016 .

[4]  Yoke San Wong,et al.  Multi-objective optimization of high-speed milling with parallel genetic simulated annealing , 2006 .

[5]  Guicai Zhang,et al.  Modeling of Cutting Force Distribution on Tool Edge in Turning Process , 2015 .

[6]  Xiaoyan Sun,et al.  A set-based genetic algorithm for solving the many-objective optimization problem , 2015, Soft Comput..

[7]  S. K. Choudhury,et al.  State of the art in hard turning , 2012 .

[8]  Ronglei Sun,et al.  Improved analytical prediction of chip formation in orthogonal cutting of titanium alloy Ti6Al4V , 2017 .

[9]  Tao Xiong,et al.  An analytical force mode applied to three-dimensional turning based on a predictive machining theory , 2018 .

[10]  J. Paulo Davim,et al.  Modeling and Optimization of Mechanical Systems and Processes , 2014 .

[11]  R. Venkata Rao,et al.  Optimization of modern machining processes using advanced optimization techniques: a review , 2014 .

[12]  Chen Ding,et al.  An analytical force prediction model for turning operation by round insert considering edge effect , 2017 .

[13]  Ramón Quiza Sardiñas,et al.  Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes , 2006, Eng. Appl. Artif. Intell..

[14]  Ronglei Sun,et al.  An analytical force model for modulation-assisted turning , 2018 .

[15]  J. Paulo Davim,et al.  Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms , 2006 .

[16]  P. De Baets,et al.  Friction and wear characteristics of WC-Co cemented carbides in dry reciprocating sliding contact , 2010 .

[17]  P. K. Jain,et al.  Extension of Oxley's predictive machining theory for Johnson and Cook flow stress model , 2009 .

[18]  Joseph A. Arsecularatne,et al.  Wear and tool life of tungsten carbide, PCBN and PCD cutting tools , 2006 .

[19]  R. Saravanan,et al.  Optimization of multi-pass turning operations using ant colony system , 2003 .

[20]  Hrelja Marko,et al.  Turning Parameters Optimization Using Particle Swarm Optimization , 2014 .

[21]  G. Mohankumar,et al.  Optimization of Machining Techniques in CNC Turning Centre Using Genetic Algorithm , 2013 .

[22]  A. Molinari,et al.  Thermomechanical modelling of oblique cutting and experimental validation , 2004 .

[23]  Surjya K. Pal,et al.  A Finite Element Study of Chip Formation Process in Orthogonal Machining , 2011, Int. J. Manuf. Mater. Mech. Eng..

[24]  Angelos P. Markopoulos,et al.  3D Finite Element Modeling of High Speed Machining , 2011, Int. J. Manuf. Mater. Mech. Eng..

[25]  J. H. Dautzenberg,et al.  Material behaviour in conditions similar to metal cutting : flow stress in the primary shear zone , 2002 .

[26]  A. A. Vinogradov,et al.  On the mechanism of chip formation in oblique cutting of metals , 2014, Journal of Superhard Materials.

[27]  Alain D'acunto,et al.  Effect of Cutting Edge Geometry on Chip Flow Direction – Analytical Modelling and Experimental Validation ☆ , 2017 .

[28]  Himadri Majumder,et al.  Performance analysis and optimization in turning of ASTM A36 through process capability index , 2016, Journal of King Saud University - Engineering Sciences.

[29]  Marko Kovacevic,et al.  Software prototype for solving multi-objective machining optimization problems: Application in non-conventional machining processes , 2014, Expert Syst. Appl..

[30]  Anirban Bhattacharya,et al.  Hard turning: Parametric optimization using genetic algorithm for rough/finish machining and study of surface morphology , 2014 .

[31]  Usama Umer Simulation of Oblique Cutting in High Speed Turning Processes , 2016 .

[32]  J. Paulo Davim,et al.  Hybrid Modeling and Optimization of Manufacturing , 2012 .

[33]  Kejia Zhuang,et al.  An analytical model for the prediction of force distribution of round insert considering edge effect and size effect , 2018 .

[34]  Rolf Steinhilper,et al.  Resource Efficiency Optimization of Manufacturing Processes Using Evolutionary Computation: A Turning Case , 2015 .

[35]  J. Paulo Davim,et al.  Multi-objective optimisation of multipass turning by using a genetic algorithm , 2009 .

[36]  Hamid Baseri,et al.  Simulated annealing based optimization of dressing conditions for increasing the grinding performance , 2011, The International Journal of Advanced Manufacturing Technology.

[37]  Zhang Dinghua,et al.  Cutting tool temperature prediction method using analytical model for end milling , 2016 .

[38]  C. A. Coello Coello,et al.  Multiobjective structural optimization using a microgenetic algorithm , 2005 .