EVOLUTIONARY SEMIGROUPS AND DICHOTOMY OF LINEAR SKEW-PRODUCT FLOWS ON LOCALLY COMPACT SPACES WITH BANACH FIBERS

Abstract We study evolutionary semigroups generated by a strongly continuous semi-cocycle over a locally compact metric space acting on Banach fibers. This setting simultaneously covers evolutionary semigroups arising from non-autonomous abstract Cauchy problems and C 0 -semigroups, and linear skew-product flows. The spectral mapping theorem for these semigroups is proved. The hyperbolicity of the semigroup is related to the exponential dichotomy of the corresponding linear skew-product flow. To this end a Banach algebra of weighted composition operators is studied. The results are applied in the study of: “roughness” of the dichotomy, dichotomy and solutions of nonhomogeneous equations, Green's function for a linear skew-product flow, “pointwise” dichotomy versus “global” dichotomy, and evolutionary semigroups along trajectories of the flow.

[1]  M. Kreĭn,et al.  Stability of Solutions of Differential Equations in Banach Spaces , 1974 .

[2]  S. Chow,et al.  Dynamical Spectrum for time dependent linear systems in Banach spaces , 1994 .

[3]  S. Montgomery-Smith,et al.  Evolutionary Semigroups and Lyapunov Theorems in Banach Spaces , 1993 .

[4]  The stability of positive semigroups on _{} spaces , 1995 .

[5]  J. Goldstein Asymptotics for Bounded Semigroups on Hilbert Space , 1986 .

[6]  L. Magalhães Persistence and smoothness of hyperbolic invariant manifolds for functional differential equations , 1987 .

[7]  Yuri Latushkin,et al.  Dichotomy of differential equations on Banach spaces and an algebra of weighted translation operators , 1995 .

[8]  Xiao-Biao Lin Exponential Dichotomies in Intermediate Spaces with Applications to a Diffusively Perturbed Predator-Prey Model , 1994 .

[9]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[10]  田辺 広城,et al.  Equations of evolution , 1979 .

[11]  René T. Rau,et al.  Hyperbolic evolution semigroups on vector valued function spaces , 1994 .

[12]  David E. Evans Time dependent perturbations and scattering of strongly continuous groups on Banach spaces , 1976 .

[13]  S. Montgomery-Smith Stability and Dichotomy of Positive Semigroups on $L_p$ , 1994, math/9406211.

[14]  J. Mather,et al.  Characterization of Anosov Diffeomorphisms , 1968 .

[15]  George R. Sell,et al.  Existence of dichotomies and invariant splittings for linear differential systems, II☆ , 1976 .

[16]  G. Lumer Equations de diffusion dans des domaines (x, t) non-cylindriques et semi-groupes "espace-temps" , 1989 .

[17]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[18]  Shui-Nee Chow,et al.  Smooth Invariant Foliations in Infinite Dimensional Spaces , 1991 .

[19]  Russell Johnson Analyticity of spectral subbundles , 1980 .

[20]  On Two Methods of Studying the Invertibility of Operators in C^*-ALGEBRAS Induced by Dynamical Systems , 1985 .

[21]  A. Ostrowski Topics in Analysis. , 1979 .

[22]  Y. Latushkin,et al.  Weighted translation operators and linear extensions of dynamical systems , 1991 .

[23]  M. A. Kaashoek,et al.  Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators , 1986 .

[24]  A Generalized Integral Manifold Theorem , 1993 .

[25]  H. Neidhardt On Abstract Linear Evolution Equations, I , 1981 .

[26]  Kenneth J. Palmer,et al.  Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points , 1988 .

[27]  Israel Gohberg,et al.  Dichotomy of systems and invertibility of linear ordinary differential operators , 1992 .

[28]  James F. Selgrade,et al.  Isolated invariant sets for flows on vector bundles , 1975 .

[29]  Green's function, continual weighted composition operators along trajectories, and hyperbolicity of linear extensions for dynamical systems , 1994 .

[30]  J. J. Schaffer,et al.  Linear differential equations and function spaces , 1966 .

[31]  George R. Sell,et al.  Ergodic properties of linear dynamical systems , 1987 .

[32]  Spectral theory for linearizations of dynamical systems , 1981 .

[33]  Semigroups and stability of nonautonomous differential equations in Banach spaces , 1994 .

[34]  S. C. Coutinho A Primer of Algebraic D -modules: Stability of differential equations , 1995 .

[35]  S. Montgomery-Smith,et al.  The spectrum of the kinematic dynamo operator for an ideally conducting fluid , 1995 .

[36]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[37]  George R. Sell,et al.  Dichotomies for linear evolutionary equations in Banach spaces , 1994 .

[38]  J. S. Howland,et al.  Stationary scattering theory for time-dependent Hamiltonians , 1974 .

[39]  Shui-Nee Chow,et al.  Existence and Roughness of the Exponential Dichotomy for Skew-Product Semiflow in Banach Spaces , 1995 .

[40]  Kenneth J. Palmer,et al.  Exponential dichotomies and Fredholm operators , 1988 .

[41]  Shui-Nee Chow,et al.  Invariant manifolds for flows in Banach spaces , 1988 .

[42]  Lyapunov theorems for Banach spaces , 1993, math/9302216.

[43]  R. Schnaubelt,et al.  A Spectral Characterization of Exponentially Dichotomic and Hyperbolic Evolution Families , 1994 .

[44]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[45]  J. Prüss On the Spectrum of C 0 -Semigroups , 1984 .