Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors.

We propose a linear-optics-based scheme for local conversion of four Einstein-Podolsky-Rosen photon pairs distributed among five parties into four-photon polarization-entangled decoherence-free states using local operations and classical communication. The proposed setup involves simple linear optical elements and non-photon-number-resolving detectors that can only distinguish between the presence and absence of photons, and no information on the exact number of photons can be obtained. This greatly simplifies the experimental realization for linear optical quantum computation and quantum information processing.

[1]  A. Zeilinger,et al.  Local Conversion of Greenberger-Horne-Zeilinger States to Approximate W States , 2005 .

[2]  Masato Koashi,et al.  Local transformation of two einstein-podolsky-rosen photon pairs into a three-photon w state. , 2008, Physical review letters.

[3]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[4]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[5]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[6]  Shou Zhang,et al.  Linear optical generation of multipartite entanglement with conventional photon detectors , 2009 .

[7]  Daniel A. Lidar,et al.  CONCATENATING DECOHERENCE-FREE SUBSPACES WITH QUANTUM ERROR CORRECTING CODES , 1998, quant-ph/9809081.

[8]  Masato Koashi,et al.  Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace , 2008, 0806.2896.

[9]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[10]  P. Kok,et al.  Postselected versus nonpostselected quantum teleportation using parametric down-conversion , 1999, quant-ph/9903074.

[11]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[12]  Scott Glancy,et al.  Imperfect detectors in linear optical quantum computers , 2002 .

[13]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[14]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[15]  Guang-Can Guo,et al.  Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions , 2006 .

[16]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[17]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[18]  Christian Kurtsiefer,et al.  Decoherence-free quantum information processing with four-photon entangled states. , 2004, Physical review letters.

[19]  Xin Ji,et al.  Improving the security of multiparty quantum secret splitting and quantum state sharing , 2006 .