Geometrizing Local Rates of Convergence for High-Dimensional Linear Inverse Problems
暂无分享,去创建一个
[1] R. Vershynin. Estimation in High Dimensions: A Geometric Perspective , 2014, 1405.5103.
[2] Christos Thrampoulidis,et al. Simple Bounds for Noisy Linear Inverse Problems with Exact Side Information , 2013, ArXiv.
[3] Yihong Wu,et al. Volume ratio, sparsity, and minimaxity under unitarily invariant norms , 2013, 2013 IEEE International Symposium on Information Theory.
[4] S. Mendelson,et al. Learning subgaussian classes : Upper and minimax bounds , 2013, 1305.4825.
[5] Joel A. Tropp,et al. Living on the edge: A geometric theory of phase transitions in convex optimization , 2013, ArXiv.
[6] T. Tony Cai,et al. Matrix completion via max-norm constrained optimization , 2013, ArXiv.
[7] Harrison H. Zhou,et al. Estimating Sparse Precision Matrix: Optimal Rates of Convergence and Adaptive Estimation , 2012, 1212.2882.
[8] S. Chatterjee,et al. Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.
[9] T. Cai,et al. Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.
[10] Suresh B. Srinivasamurthy. Methods of Solving Ill-Posed Problems , 2012, 1205.5323.
[11] Benjamin Recht,et al. Probability of unique integer solution to a system of linear equations , 2011, Eur. J. Oper. Res..
[12] Emmanuel J. Candès,et al. Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.
[13] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[14] V. Koltchinskii,et al. Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.
[15] V. Koltchinskii. Von Neumann Entropy Penalization and Low Rank Matrix Estimation , 2010, 1009.2439.
[16] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[17] A. Tsybakov,et al. Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.
[18] Yi Ma,et al. Robust principal component analysis? , 2009, JACM.
[19] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[20] Devavrat Shah,et al. Inferring Rankings Using Constrained Sensing , 2009, IEEE Transactions on Information Theory.
[21] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..
[22] Emmanuel J. Candès,et al. Matrix Completion With Noise , 2009, Proceedings of the IEEE.
[23] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[24] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[25] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[26] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[27] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[28] E. Candès,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[29] Panos M. Pardalos,et al. On complexity of unconstrained hyperbolic 0-1 programming problems , 2005, Oper. Res. Lett..
[30] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[31] T. Cai,et al. Minimax estimation of linear functionals over nonconvex parameter spaces , 2004, math/0406427.
[32] S. R. Jammalamadaka,et al. Empirical Processes in M-Estimation , 2001 .
[33] M. Talagrand. Majorizing measures: the generic chaining , 1996 .
[34] Thomas Bäck,et al. The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.
[35] D. Donoho. Statistical Estimation and Optimal Recovery , 1994 .
[36] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[37] Bernard W. Silverman,et al. Speed of Estimation in Positron Emission Tomography and Related Inverse Problems , 1990 .
[38] F. O’Sullivan. A Statistical Perspective on Ill-posed Inverse Problems , 1986 .
[39] L. Valiant,et al. NP is as easy as detecting unique solutions , 1985, STOC '85.
[40] J. Berge,et al. Orthogonal procrustes rotation for two or more matrices , 1977 .
[41] R. Dudley. The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .
[42] Statistics For High Dimensional Data Methods Theory And , 2022 .
[43] R. Vershynin. Lectures in Geometric Functional Analysis , 2012 .
[44] Mark Rudelson,et al. Convex bodies with minimal mean width , 2000 .
[45] Bin Yu. Assouad, Fano, and Le Cam , 1997 .
[46] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[47] D. Pollard. Empirical Processes: Theory and Applications , 1990 .
[48] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[49] Y. Gordon. On Milman's inequality and random subspaces which escape through a mesh in ℝ n , 1988 .