Experimental motivation and empirical consistency in minimal no-collapse quantum mechanics

Abstract We analyze three important experimental domains (SQUIDs, molecular interferometry, and Bose–Einstein condensation) as well as quantum-biophysical studies of the neuronal apparatus to argue that (i) the universal validity of unitary dynamics and the superposition principle has been confirmed far into the mesoscopic and macroscopic realm in all experiments conducted thus far; (ii) all observed “restrictions” can be correctly and completely accounted for by taking into account environmental decoherence effects; (iii) no positive experimental evidence exists for physical state-vector collapse; (iv) the perception of single “outcomes” is likely to be explainable through decoherence effects in the neuronal apparatus. We also discuss recent progress in the understanding of the emergence of quantum probabilities and the objectification of observables. We conclude that it is not only viable, but moreover compelling to regard a minimal no-collapse quantum theory as a leading candidate for a physically motivated and empirically consistent interpretation of quantum mechanics.

[1]  N. Bohr Über die Anwendung der Quantentheorie auf den Atombau , 1923 .

[2]  David Shortt,et al.  Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity. . , 2006 .

[3]  H. Everett "Relative State" Formulation of Quantum Mechanics , 1957 .

[4]  L. Zanello,et al.  Phenomenology of Unification from Present to Future , 1994 .

[5]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[6]  R. Penrose,et al.  Shadows of the Mind , 1994 .

[7]  Han,et al.  Observation of Resonant Tunneling between Macroscopically Distinct Quantum Levels. , 1995, Physical review letters.

[8]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[9]  D. Pritchard,et al.  Light Scattering to Determine the Relative Phase of Two Bose-Einstein Condensates , 2005, Science.

[10]  Friedman,et al.  Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. , 1996, Physical review letters.

[11]  Macroscopic superpositions of Bose-Einstein condensates , 1997, cond-mat/9708089.

[12]  K. W. Mahmud Quantum phase-space picture of Bose-Einstein condensates in a double well (17 pages) , 2005 .

[13]  Ruggiero,et al.  Resonant macroscopic quantum tunneling in SQUID systems. , 1996, Physical review. B, Condensed matter.

[14]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[15]  Enrico G. Beltrametti,et al.  Advances in Quantum Phenomena , 1995 .

[16]  Fleming,et al.  Environmental and spontaneous localization. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[17]  W. Zurek Probabilities from Envariance , 2004 .

[18]  C. Savage,et al.  Macroscopic quantum superposition states in Bose-Einstein condensates: Decoherence and many modes , 2001 .

[19]  Max Tegmark,et al.  The importance of quantum decoherence in brain processes , 1999, ArXiv.

[20]  Jean-Raymond Abrial,et al.  On B , 1998, B.

[21]  M. Donald,et al.  A mathematical characterization of the physical structure of observers , 1995 .

[22]  J. Sipe,et al.  Collisional decoherence reexamined , 2003, quant-ph/0303094.

[23]  Many-particle entanglement in two-component Bose-Einstein condensates , 2002, cond-mat/0205369.

[24]  Geoffrey Hellman,et al.  Quantum Measurement: Beyond Paradox , 1998 .

[25]  W. H. Zurek,et al.  Einselection and decoherence from an information theory perspective , 2000, Annalen der Physik.

[26]  Apparent wave function collapse caused by scattering , 1993, gr-qc/9310032.

[27]  J. Sipe,et al.  Theory of decoherence in a matter wave Talbot-Lau interferometer (18 pages) , 2004, quant-ph/0407245.

[28]  A. N. Korotkov,et al.  Continuous weak measurement of quantum coherent oscillations , 2001 .

[29]  Thornton Page,et al.  The Scientist Speculates: An Anthology of Partly-baked Ideas , 1964 .

[30]  J. Dunningham,et al.  Proposals for creating Schrödinger cat states in bose-einstein condensates , 2001 .

[31]  D. Dalvit,et al.  Decoherence in Bose-Einstein condensates: Towards bigger and better Schrödinger cats , 2000, cond-mat/0001301.

[32]  A. Korotkov Selective quantum evolution of a qubit state due to continuous measurement , 2000, cond-mat/0008461.

[33]  J. Bell On the impossible pilot wave , 1982 .

[34]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[35]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[36]  David Poulin,et al.  Objective properties from subjective quantum states: environment as a witness. , 2004, Physical review letters.

[37]  Anton Zeilinger,et al.  Wave nature of biomolecules and fluorofullerenes. , 2003, Physical review letters.

[38]  Rubenstein,et al.  Optics and interferometry with Na2 molecules. , 1995, Physical review letters.

[39]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[40]  E. Ippoliti,et al.  Towards Quantum Superpositions of a Mirror: an Exact Open Systems Analysis * , 2022 .

[41]  C. Bordé,et al.  Molecular interferometry experiments , 1994 .

[42]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[43]  Diósi,et al.  Models for universal reduction of macroscopic quantum fluctuations. , 1989, Physical review. A, General physics.

[44]  Maximal entanglement of two spinor Bose-Einstein condensates , 2005, cond-mat/0501471.

[45]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[46]  A. Rae Can GRW theory be tested by experiments on SQUIDS , 1990 .

[47]  Jean-Michel Raimond,et al.  Reversible Decoherence of a Mesoscopic Superposition of Field States , 1997 .

[48]  A. Schenzle,et al.  TRANSITION FROM PHASE LOCKING TO THE INTERFERENCE OF INDEPENDENT BOSE CONDENSATES : THEORY VERSUS EXPERIMENT , 1997 .

[49]  Wojciech H. Zurek,et al.  Decoherence, einselection and the existential interpretation (the rough guide) , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  H. Zeh On the interpretation of measurement in quantum theory , 1970 .

[51]  Christoph Simon,et al.  Towards quantum superpositions of a mirror , 2004 .

[52]  Mermin Nd Simple unified form for the major no-hidden-variables theorems. , 1990 .

[53]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .

[54]  Decoherence of a superposition of macroscopic current states in a SQUID , 2002, cond-mat/0211246.

[55]  David Deutsch,et al.  Quantum theory as a universal physical theory , 1985 .

[56]  Alwyn C. Scott,et al.  Toward a science of consciousness: The first Tucson discussions and debates , 1996 .

[57]  W. Zurek Environment-induced superselection rules , 1982 .

[58]  Nonequilibrium Gross-Pitaevskii dynamics of boson lattice models , 2002, cond-mat/0206490.

[59]  S. Hameroff,et al.  Quantum computation in brain microtubules: decoherence and biological feasibility. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[61]  E. del Barco,et al.  Quantum coherence in Fe8 molecular nanomagnets , 1998 .

[62]  A. Polkovnikov Evolution of the macroscopically entangled states in optical lattices , 2003, cond-mat/0303629.

[63]  W. Zurek Environment-assisted invariance, entanglement, and probabilities in quantum physics. , 2002, Physical review letters.

[64]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[65]  Niels Bohr,et al.  ON THE NOTIONS OF CAUSALITY AND COMPLEMENTARITY1 , 1948 .

[66]  Anton Zeilinger,et al.  Decoherence of matter waves by thermal emission of radiation , 2004, Nature.

[67]  W. Ketterle,et al.  Observation of Interference Between Two Bose Condensates , 1997, Science.

[68]  Andrew G. Glen,et al.  APPL , 2001 .

[69]  David Wallace Everettian Rationality: defending Deutsch's approach to probability in the Everett interpretation , 2003 .

[70]  David Deutsch Quantum theory of probability and decisions , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[71]  R. Penrose,et al.  Conscious Events as Orchestrated Space-Time Selections , 1996 .

[72]  L. Vaidman On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory , 1996, quant-ph/9609006.

[73]  J. Kolata Transfer, breakup, and fusion reactions of 6He with 209Bi near the Coulomb barrier , 2002 .

[74]  Toward a quantum theory of observation , 1973, quant-ph/0306151.

[75]  Yoo,et al.  Quantum phase of a Bose-Einstein condensate with an arbitrary number of atoms. , 1996, Physical review letters.

[76]  C. Ross Found , 1869, The Dental register.

[77]  D. Pritchard,et al.  Atom interferometry with Bose-Einstein condensates in a double-well potential. , 2003, Physical review letters.

[78]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[79]  U. Weiss Quantum Dissipative Systems , 1993 .

[80]  Luiz Pinguelli Rosa,et al.  Quantum models of the mind: are they compatible with environment decoherence? , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Method for direct observation of coherent quantum oscillations in a superconducting phase qubit , 2002, cond-mat/0208143.

[82]  Microscopic theory of atom-molecule oscillations in a Bose-Einstein condensate , 2002, cond-mat/0209100.

[83]  C. Sackett,et al.  Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number , 1997 .

[84]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[85]  David Wallace,et al.  Worlds in the Everett interpretation , 2001, quant-ph/0103092.

[86]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[87]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[88]  Anton Zeilinger,et al.  Collisional decoherence observed in matter wave interferometry. , 2003, Physical review letters.

[89]  Bryce S. DeWitt,et al.  Quantum mechanics and reality , 1970 .

[90]  P. Zoller,et al.  Quantum Superposition States of Bose-Einstein Condensates , 1997, quant-ph/9706034.

[91]  E. Joos,et al.  The emergence of classical properties through interaction with the environment , 1985 .

[92]  A. Zeilinger,et al.  Decoherence in a Talbot–Lau interferometer: the influence of molecular scattering , 2003, quant-ph/0307238.

[93]  W. Zurek Preferred States, Predictability, Classicality and the Environment-Induced Decoherence , 1993 .

[94]  R. Geroch The Everett Interpretation , 1984 .

[95]  Anthony J Leggett,et al.  Macroscopic Quantum Systems and the Quantum Theory of Measurement (Progress in Statistical and Solid State Physics--In Commemoration of the Sixtieth Birthday of Ryogo Kubo) -- (Statistical Physics) , 1980 .

[96]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[97]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[98]  GianCarlo Ghirardi,et al.  Dynamical reduction models , 2003 .

[99]  Influence of molecular temperature on the coherence of fullerenes in a near-field interferometer , 2004, quant-ph/0412003.

[100]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[101]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[102]  E. Squires On an alleged “proof” of the quantum probability law , 1990 .

[103]  A. Zeilinger,et al.  Matter-wave interferometer for large molecules. , 2002, Physical review letters.

[104]  T. D. Clark,et al.  Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring , 2003, quant-ph/0307175.

[105]  A. Rimini,et al.  Dissipation and reduction effects of spontaneous localization on superconducting states , 1995 .

[106]  J. Javanainen Bose-Einstein Condensates Interfere and Survive , 2005, Science.

[107]  Charles L. Harper,et al.  Science and ultimate reality : quantum theory, cosmology, and complexity , 2004 .

[108]  A note on measurement , 2001, quant-ph/0101141.

[109]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[110]  H. D. Zeh THE PROBLEM OF CONSCIOUS OBSERVATION IN QUANTUM MECHANICAL DESCRIPTION , 1999 .

[111]  Fred H. Thaheld Does consciousness really collapse the wave function? A possible objective biophysical resolution of the measurement problem. , 2005, Bio Systems.

[112]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[113]  D. Mailly,et al.  Macroscopic Quantum Tunneling of Magnetization of Single Ferrimagnetic Nanoparticles of Barium Ferrite , 1997 .

[114]  Michael Lockwood,et al.  'Many Minds' Interpretations of Quantum Mechanics , 1996 .

[115]  D. Gordon,et al.  CREATING MACROSCOPIC QUANTUM SUPERPOSITIONS WITH BOSE-EINSTEIN CONDENSATES , 1999 .

[116]  A. Cleland,et al.  Quantum Mechanics of a Macroscopic Variable: The Phase Difference of a Josephson Junction , 1988, Science.

[117]  M. Ferrero,et al.  New Developments on Fundamental Problems in Quantum Physics , 1997 .

[118]  On Zurek’s Derivation of the Born Rule , 2003, quant-ph/0312058.

[119]  Paolo Silvestrini,et al.  OBSERVATION OF ENERGY LEVELS QUANTIZATION IN UNDERDAMPED JOSEPHSON JUNCTIONS ABOVE THE CLASSICAL-QUANTUM REGIME CROSSOVER TEMPERATURE , 1997 .

[120]  R. Schack,et al.  Quantum probability from decision theory? , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[121]  Siyuan Han,et al.  Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction , 2002, Science.

[122]  H. Stapp Mind, matter, and quantum mechanics , 1982 .

[123]  H. Stapp The Basis Problem in Many-Worlds Theories , 2002 .

[124]  James B. Hartle,et al.  Quantum Mechanics of Individual Systems , 1968, 1907.02953.

[125]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[126]  Pearle,et al.  Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[127]  Stephen L. Adler,et al.  Quantum Theory as an Emergent Phenomenon: Introduction and overview , 2004 .

[128]  David Wallace,et al.  Everett and structure , 2001 .

[129]  Pearle,et al.  Combining stochastic dynamical state-vector reduction with spontaneous localization. , 1989, Physical review. A, General physics.

[130]  Anton Zeilinger,et al.  Wave–particle duality of C60 molecules , 1999, Nature.

[131]  Adrian Kent,et al.  AGAINST MANY WORLDS INTERPRETATIONS , 1990 .

[132]  The Everett Interpretation of Quantum Mechanics: Many Worlds or None? , 1984 .

[133]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.