Graphene plasmonics: a platform for strong light-matter interactions.

Graphene plasmons provide a suitable alternative to noble-metal plasmons because they exhibit much tighter confinement and relatively long propagation distances, with the advantage of being highly tunable via electrostatic gating. Here, we propose to use graphene plasmons as a platform for strongly enhanced light-matter interactions. Specifically, we predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, observable vacuum Rabi splittings, and extinction cross sections exceeding the geometrical area in graphene nanoribbons and nanodisks. Our theoretical results provide the basis for the emerging and potentially far-reaching field of graphene plasmonics, offering an ideal platform for cavity quantum electrodynamics, and supporting the possibility of single-molecule, single-plasmon devices.

[1]  Steven G. Louie,et al.  Controlling inelastic light scattering quantum pathways in graphene , 2011, Nature.

[2]  L. Novotný,et al.  Antennas for light , 2011 .

[3]  N. Engheta,et al.  One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene , 2011, 1101.3585.

[4]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.

[5]  Elefterios Lidorikis,et al.  Surface-enhanced Raman spectroscopy of graphene. , 2010, ACS nano.

[6]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[7]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[8]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[9]  Reza Asgari,et al.  Observation of Plasmarons in Quasi-Freestanding Doped Graphene , 2010, Science.

[10]  Francesco De Angelis,et al.  Graphene in a photonic metamaterial. , 2010, Optics express.

[11]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.

[12]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[13]  M. Fleischhauer,et al.  Quantum emitters coupled to surface plasmons of a nanowire: A Green's function approach , 2010, 1002.1419.

[14]  Woojin Han,et al.  Nanoparticle coatings for enhanced capture of flowing cells in microtubes. , 2010, ACS nano.

[15]  K. Balasubramanian,et al.  Marker-free on-the-fly fabrication of graphene devices based on fluorescence quenching , 2010, Nanotechnology.

[16]  Jiaxing Huang,et al.  Visualizing graphene based sheets by fluorescence quenching microscopy. , 2009, Journal of the American Chemical Society.

[17]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[18]  L. Novotný,et al.  Optical Measurement of the Phase-Breaking Length in Graphene , 2008, 1008.1563.

[19]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[20]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[21]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[22]  Mathieu Kociak,et al.  Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. , 2009, Journal of the American Chemical Society.

[23]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[24]  A. Polman,et al.  Plasmonics Applied , 2008, Science.

[25]  J. Misewich,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[26]  K. L. Sebastian,et al.  Resonance energy transfer from a dye molecule to graphene. , 2008, The Journal of chemical physics.

[27]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[28]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[29]  R. Asgari,et al.  Plasmons and the spectral function of graphene , 2008 .

[30]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[31]  S. Mikhailov,et al.  New electromagnetic mode in graphene. , 2007, Physical review letters.

[32]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[33]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[34]  M. Rooks,et al.  Graphene nano-ribbon electronics , 2007, cond-mat/0701599.

[35]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[36]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006, cond-mat/0610630.

[37]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[38]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[39]  O. Vafek Thermoplasma polariton within scaling theory of single-layer graphene. , 2006, Physical review letters.

[40]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[41]  J. Baumberg,et al.  Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. , 2006, Optics express.

[42]  M. Lukin,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[43]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[44]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[45]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[46]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[47]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[48]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[49]  F. Lesage,et al.  Boundary Interaction Changing Operators and Dynamical Correlations in Quantum Impurity Problems , 1997, cond-mat/9712019.

[50]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[51]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[52]  S. Phoenix Elements of Quantum Optics , 1991 .

[53]  R. Sillitto The Quantum Theory of Light , 1974 .

[54]  N. D. Mermin,et al.  Lindhard Dielectric Function in the Relaxation-Time Approximation , 1970 .

[55]  Frank Stern,et al.  Polarizability of a Two-Dimensional Electron Gas , 1967 .

[56]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .