Electroluminescence from nanocrystals above 2 µm

[1]  C. Delerue,et al.  Seeded Growth of HgTe Nanocrystals for Shape Control and Their Use in Narrow Infrared Electroluminescence , 2021 .

[2]  B. Gallas,et al.  Complex Optical Index of HgTe Nanocrystal Infrared Thin Films and Its Use for Short Wave Infrared Photodiode Design , 2021, Advanced Optical Materials.

[3]  E. Lhuillier,et al.  Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. , 2021, Chemical reviews.

[4]  V. Pruneri,et al.  Highly transparent and conductive ITO substrates for near infrared applications , 2021 .

[5]  M. Cho,et al.  Ultrafast Intraband Auger Process in Self-Doped Colloidal Quantum Dots , 2020, Matter.

[6]  G. Konstantatos,et al.  Solid‐State Thin‐Film Broadband Short‐Wave Infrared Light Emitters , 2020, Advanced materials.

[7]  G. Fishman,et al.  The Strong Confinement Regime in HgTe Two-Dimensional Nanoplatelets , 2020 .

[8]  A. Ouerghi,et al.  Time-Resolved Photoemission to Unveil Electronic Coupling between Absorbing and Transport Layers in a Quantum Dot-Based Solar Cell , 2020 .

[9]  A. Javey,et al.  A generic electroluminescent device for emission from infrared to ultraviolet wavelengths , 2020 .

[10]  P. Guyot-Sionnest,et al.  Shape-Controlled HgTe Colloidal Quantum Dots and Reduced Spin-Orbit Splitting in the Tetrahedral Shape. , 2020, The journal of physical chemistry letters.

[11]  C. Robert,et al.  Electroluminescence from HgTe Nanocrystals and its Use for Active Imaging. , 2020, Nano letters.

[12]  P. Chou,et al.  Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling , 2020 .

[13]  M. Lapine,et al.  Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays , 2020, Light, science & applications.

[14]  Sang‐Soo Chee,et al.  Infrared narrow band gap nanocrystals: recent progresses relative to imaging and active detection , 2020, 2001.11554.

[15]  A. Ouerghi,et al.  Revealing the Band Structure of FAPI Quantum Dot Film and Its Interfaces with Electron and Hole Transport Layer Using Time Resolved Photoemission , 2020, The Journal of Physical Chemistry C.

[16]  Byung Soon Kim,et al.  Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window , 2020, Nature Photonics.

[17]  Handong Sun,et al.  Record High External Quantum Efficiency of 19.2% Achieved in Light‐Emitting Diodes of Colloidal Quantum Wells Enabled by Hot‐Injection Shell Growth , 2019, Advanced materials.

[18]  M. Silly,et al.  Impact of dimensionality and confinement on the electronic properties of mercury chalcogenide nanocrystals. , 2019, Nanoscale.

[19]  Shuchi Gupta,et al.  High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level , 2018, Nature Nanotechnology.

[20]  P. Guyot-Sionnest,et al.  Slow Auger Relaxation in HgTe Colloidal Quantum Dots. , 2018, The journal of physical chemistry letters.

[21]  D. van Thourhout,et al.  Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. , 2018, Nature materials.

[22]  A. Ouerghi,et al.  Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells. , 2017, Nano letters.

[23]  A. Vicet,et al.  Electrically pumped all photonic crystal 2nd order DFB lasers arrays emitting at 2.3 μm , 2017 .

[24]  J. Hartmann,et al.  Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells , 2017 .

[25]  Aurore Vicet,et al.  Compact sensor for methane detection in the mid infrared region based on Quartz Enhanced Photoacoustic Spectroscopy , 2015 .

[26]  M. Oehme,et al.  Germanium tin light emitters on silicon , 2014 .

[27]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[28]  P. Guyot-Sionnest,et al.  Photoluminescence of Mid-Infrared HgTe Colloidal Quantum Dots , 2014 .

[29]  Shuchi Gupta,et al.  Multiple exciton generation and ultrafast exciton dynamics in HgTe colloidal quantum dots. , 2013, Physical chemistry chemical physics : PCCP.

[30]  C. Delerue,et al.  Tight-binding calculations of the optical properties of HgTe nanocrystals , 2012 .

[31]  Philippe Guyot-Sionnest,et al.  Optical properties of HgTe colloidal quantum dots , 2012, Nanotechnology.

[32]  P. Guyot-Sionnest,et al.  Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. , 2011, Journal of the American Chemical Society.

[33]  M. Silly,et al.  Time-resolved photoelectron spectroscopy using synchrotron radiation time structure. , 2011, Journal of synchrotron radiation.

[34]  V. Bulović,et al.  Colloidal quantum dot light-emitting devices , 2010, Nano reviews.

[35]  William W. Bewley,et al.  Interband cascade laser emitting at λ=3.75μm in continuous wave above room temperature , 2008 .

[36]  B. Luther-Davies,et al.  Small atomic displacements recorded in bismuth by the optical reflectivity of femtosecond laser-pulse excitations. , 2008, Physical review letters.

[37]  Hilmi Volkan Demir,et al.  White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes , 2007 .

[38]  E. O'Connor,et al.  Near-infrared electroluminescent devices based on colloidal HgTe quantum dot arrays , 2005 .

[39]  M. Reufer,et al.  Near-infrared electroluminescence from HgTe nanocrystals. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  A. Delin,et al.  Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systems ß-HgS, HgSe, and HgTe , 2002 .

[41]  U. Banin,et al.  Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes , 2002, Science.

[42]  Nicholas A. Kotov,et al.  Layer-by-Layer Assembled Films of HgTe Nanocrystals with Strong Infrared Emission. , 2000 .

[43]  Alexander Eychmüller,et al.  Colloidally Prepared HgTe Nanocrystals with Strong Room‐Temperature Infrared Luminescence , 1999 .

[44]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.