Casimir forces in multilayer magnetodielectrics with both gain and loss

A path-integral approach to the quantization of the electromagnetic field in a linearly amplifying magnetodielectric medium is presented. Two continua of inverted harmonic oscillators are used to describe the polarizability and magnetizability of the amplifying medium. The causal susceptibilities of the amplifying medium, with negative imaginary parts in finite frequency intervals, are identified and their relationships to microscopiccouplingfunctionsaredetermined.Bycarefullyrelatingthetwo-pointfunctionsofthefieldtheoryto theopticalGreenfunctions,wecalculatetheCasimirenergyandCasimirforcesforamultilayermagnetodielectric medium with both gain and loss. We point out the essential differences with a purely passive layered medium. For a single layer, we find different bounds on the Casimir force for fully amplifying and for lossy media. The force is attractive in both cases, even if the medium exhibits negative refraction. From our Lagrangian we also derive by canonical quantization the postulates of the phenomenological theory of amplifying magnetodielectrics.

[1]  S. Ellingsen Casimir attraction in multilayered plane parallel magnetodielectric systems , 2006, quant-ph/0607157.

[2]  A. Lambrecht,et al.  Casimir repulsion and metamaterials , 2008, 0801.3223.

[3]  S. Buhmann,et al.  Casimir force on amplifying bodies , 2009, 0902.3874.

[4]  T. H. Boyer,et al.  Van der Waals forces and zero-point energy for dielectric and permeable materials , 1974 .

[5]  J. Schwinger,et al.  Casimir effect in dielectrics , 1978 .

[6]  S. Lamoreaux Demonstration of the Casimir force in the 0.6 to 6 micrometers range , 1996 .

[7]  U. Mohideen,et al.  Demonstration of the Nontrivial Boundary Dependence of the Casimir Force , 1999 .

[8]  Johannes Skaar On resolving the refractive index and the wave vector. , 2006, Optics letters.

[9]  S. Barnett,et al.  Dispersion and Loss in a Hopfield Dielectric , 1992 .

[10]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[11]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[12]  O Kenneth,et al.  Repulsive Casimir forces. , 2002, Physical review letters.

[13]  I. Brevik,et al.  Casimir force on real materials—the slab and cavity geometry , 2006, quant-ph/0611030.

[14]  S. Buhmann,et al.  Impact of amplifying media on the Casimir force , 2009, 0902.1613.

[15]  E. Amooghorban,et al.  Finite-temperature Casimir effect in the presence of nonlinear dielectrics , 2010, 1010.4235.

[16]  Barnett,et al.  Quantization of the electromagnetic field in dielectrics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  F. Kheirandish,et al.  Casimir force in the presence of a medium , 2010 .

[18]  Raymond Y. Chiao,et al.  Coherent Resonance Fluorescence Excited by Short Light Pulses , 1969 .

[19]  Imoto,et al.  Quantum optics of traveling-wave attenuators and amplifiers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[20]  S. Barnett,et al.  Canonical quantum theory of light propagation in amplifying media , 1996 .

[21]  P. Milonni,et al.  Casimir-Lifshitz theory and metamaterials. , 2008, Physical review letters.

[22]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[23]  T. Philbin Canonical quantization of macroscopic electromagnetism , 2010, 1009.5005.

[24]  Y. Sherkunov van der Waals interaction of excited media , 2005, quant-ph/0503063.

[25]  S. Buhmann,et al.  Ground-state van der Waals forces in planar multilayer magnetodielectrics (16 pages) , 2005, quant-ph/0502183.

[26]  F. Capasso,et al.  Measured long-range repulsive Casimir–Lifshitz forces , 2009, Nature.

[27]  E. Pike,et al.  Frontiers in quantum optics , 1986 .

[28]  M. Kardar,et al.  Fluctuation-induced forces between rough surfaces. , 1991, Physical review letters.

[29]  E. Amooghorban,et al.  Finite-temperature Cherenkov radiation in the presence of a magnetodielectric medium , 2010, 1009.2924.

[30]  F. Capasso,et al.  Nonlinear micromechanical Casimir oscillator. , 2001, Physical review letters.

[31]  Relationship between the Kramers-Kronig relations and negative index of refraction , 2010, 1007.0377.

[32]  Normal and lateral Casimir forces between deformed plates , 2002, cond-mat/0211193.

[33]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[34]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[35]  S. Scheel,et al.  QED commutation relations for inhomogeneous Kramers-Kronig dielectrics , 1998, quant-ph/9803031.

[36]  R. Onofrio,et al.  Measurement of the Casimir force between parallel metallic surfaces. , 2002, Physical review letters.

[37]  H. B. Chan,et al.  Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. , 2008, Physical review letters.

[38]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[39]  D. Iannuzzi,et al.  Halving the Casimir force with conductive oxides. , 2009, Physical review letters.

[40]  M. Kardar,et al.  Probing the strong boundary shape dependence of the Casimir force. , 2001, Physical review letters.

[41]  L. G. Suttorp,et al.  Field quantization in inhomogeneous absorptive dielectrics , 2004 .

[42]  Johannes Skaar,et al.  Causality and electromagnetic properties of active media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Evgenii Mikhailovich Lifshitz,et al.  General theory of van der Waals' forces , 1961 .

[44]  D. Welsch,et al.  QED in arbitrary linear media: Amplifying media , 2007, 0710.2867.

[45]  C. Anderson,et al.  Verification of the Lifshitz Theory of the van der Waals Potential Using Liquid-Helium Films , 1973 .

[46]  R. Chiao,et al.  Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[47]  G. L. Klimchitskaya,et al.  Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals , 2000 .

[48]  Casimir force between dispersive magnetodielectrics , 2004, quant-ph/0410057.

[49]  F. Capasso,et al.  Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force , 2001, Science.

[50]  C. Soukoulis,et al.  Repulsive Casimir force in chiral metamaterials. , 2009, Physical review letters.

[51]  S. Dietrich,et al.  Direct measurement of critical Casimir forces , 2008, Nature.

[52]  M. Masuda,et al.  Limits on nonstandard forces in the submicrometer range. , 2009, Physical review letters.

[53]  Quantum physics: Quantum force turns repulsive , 2009, Nature.

[54]  L. Bergström,et al.  Superlubricity using repulsive van der Waals forces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[55]  S. Lamoreaux,et al.  Measurement of the short-range attractive force between Ge plates using a torsion balance. , 2008, Physical review letters.

[56]  Martijn Wubs,et al.  Transient QED effects in absorbing dielectrics , 2001 .

[57]  M. Kardar,et al.  Path-integral approach to the dynamic Casimir effect with fluctuating boundaries , 1998, quant-ph/9802017.

[58]  D. Welsch,et al.  Three-dimensional Casimir force between absorbing multilayer dielectrics , 2002, quant-ph/0212154.

[59]  F. Wilczek Quantum Field Theory , 1998, hep-th/9803075.

[60]  Zhou,et al.  van der Waals and retardation (Casimir) interactions of an electron or an atom with multilayered walls. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[61]  Tomas Ms,et al.  Green function for multilayers: Light scattering in planar cavities. , 1995 .

[62]  Kardar,et al.  Fluctuation-induced forces between manifolds immersed in correlated fluids. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[63]  L. Teo Casimir piston of real materials and its application to multilayer models , 2009, 0908.3942.

[64]  F. Kheirandish,et al.  Extension of the Huttner-Barnett model to a magnetodielectric medium , 2008, 0801.1902.

[65]  Casimir force acting on magnetodielectric bodies embedded in media (15 pages) , 2004, quant-ph/0408075.

[66]  L. Pitaevskiĭ Comment on 'Casimir force acting on magnetodielectric bodies embedded in media' , 2006 .

[67]  M. J. Sparnaay Measurements of attractive forces between flat plates , 1958 .

[68]  I. Brevik,et al.  Comment on “Casimir force acting on magnetodielectric bodies embedded in media” , 2008, 0806.2927.

[69]  S. Lamoreaux Erratum: Demonstration of the Casimir Force in the 0.6 to 6 μ m Range [Phys. Rev. Lett. 78, 5 (1997)] , 1998 .

[70]  U. Leonhardt,et al.  Quantum levitation by left-handed metamaterials , 2006, quant-ph/0608115.

[71]  D. Iannuzzi,et al.  Casimir Forces and Quantum Electrodynamical Torques: Physics and Nanomechanics , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[72]  Fresnel equations and the refractive index of active media. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  Umar Mohideen,et al.  Advances in the Casimir Effect , 2009 .