An Inference System for Exhaustive Generation of Mixed and Purely Negative Implications from Purely Positive Ones

The objective of this article is to study the problem of generating implications with negation when only a set of purely positive implications related to a formal context K = (G,M, I) is provided. To that end, we define a sound and complete inference system which includes a characterization of implications whose left-hand side is a key in the context K|K representing the apposition of the context K and its complementary K.

[1]  Jean-François Boulicaut,et al.  Towards the Tractable Discovery of Association Rules with Negations , 2000, FQAS.

[2]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.

[3]  Rokia Missaoui,et al.  An Exhaustive Generation of Mixed and Purely Negative Implications from Purely Positive Ones. , 2010, CLA 2010.

[4]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[5]  Michael Luxenburger,et al.  Implications partielles dans un contexte , 1991 .

[6]  Ming-Syan Chen,et al.  A statistical framework for mining substitution rules , 2005, Knowledge and Information Systems.

[7]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[8]  Rokia Missaoui,et al.  Generating Positive and Negative Exact Rules Using Formal Concept Analysis: Problems and Solutions , 2008, ICFCA.

[9]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[10]  Osmar R. Zaïane,et al.  Mining Positive and Negative Association Rules: An Approach for Confined Rules , 2004, PKDD.

[11]  Shamkant B. Navathe,et al.  Mining for strong negative associations in a large database of customer transactions , 1998, Proceedings 14th International Conference on Data Engineering.

[12]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[13]  Hao Wang,et al.  Mining a Complete Set of Both Positive and Negative Association Rules from Large Databases , 2008, PAKDD.

[14]  Heikki Mannila,et al.  Multiple Uses of Frequent Sets and Condensed Representations (Extended Abstract) , 1996, KDD.

[15]  Xindong Wu,et al.  Efficient mining of both positive and negative association rules , 2004, TOIS.

[16]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[17]  Rokia Missaoui,et al.  A partition-based approach towards constructing Galois (concept) lattices , 2002, Discret. Math..

[18]  L.N. Alachaher,et al.  Mining Negative and Positive Influence Rules Using Kullback-Leibler Divergence , 2007, 2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07).

[19]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[20]  Einoshin Suzuki,et al.  Data Mining Methods for Discovering Interesting Exceptions from an Unsupervised Table , 2006, J. Univers. Comput. Sci..

[21]  Marzena Kryszkiewicz,et al.  Concise Representation of Frequent Patterns Based on Generalized Disjunction-Free Generators , 2002, PAKDD.

[22]  Yoan Renaud Quelques aspects algorithmiques sur les systèmes de fermeture. (Some algoritmic aspects on closure systems) , 2008 .