Lifted collocation integrators for direct optimal control in ACADO toolkit

This paper presents a class of efficient Newton-type algorithms for solving the nonlinear programs (NLPs) arising from applying a direct collocation approach to continuous time optimal control. The idea is based on an implicit lifting technique including a condensing and expansion step, such that the structure of each subproblem corresponds to that of the multiple shooting method for direct optimal control. We establish the mathematical equivalence between the Newton iteration based on direct collocation and the proposed approach, and we discuss the computational advantages of a lifted collocation integrator. In addition, we investigate different inexact versions of the proposed scheme and study their convergence and computational properties. The presented algorithms are implemented as part of the open-source ACADO code generation software for embedded optimization. Their performance is illustrated on a benchmark case study of the optimal control for a chain of masses. Based on these results, the use of lifted collocation within direct multiple shooting allows for a computational speedup factor of about 10 compared to a standard collocation integrator and a factor in the range of 10–50 compared to direct collocation using a general-purpose sparse NLP solver.

[1]  Arto Visala,et al.  A toolkit for nonlinear model predictive control using gradient projection and code generation , 2015 .

[2]  Marko Bacic,et al.  Model predictive control , 2003 .

[3]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[4]  Gianluca Frison,et al.  Algorithms and Methods for High-Performance Model Predictive Control , 2016 .

[5]  G. J. Cooper,et al.  Some schemes for the implementation of implicit Runge-Kutta methods , 1993 .

[6]  Filip Logist,et al.  Symmetric algorithmic differentiation based exact Hessian SQP method and software for Economic MPC , 2014, 53rd IEEE Conference on Decision and Control.

[7]  Moritz Diehl,et al.  Inexact Newton based Lifted Implicit Integrators for fast Nonlinear MPC , 2015 .

[8]  Juan I. Montijano,et al.  Iterative schemes for three-stage implicit Runge-Kutta methods , 1995 .

[9]  R. Serban,et al.  CVODES: The Sensitivity-Enabled ODE Solver in SUNDIALS , 2005 .

[10]  Moritz Diehl,et al.  Autogenerating microsecond solvers for nonlinear MPC: A tutorial using ACADO integrators , 2015 .

[11]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[12]  George Isac,et al.  Newton-Like Methods , 2002 .

[13]  Zoltan K. Nagy,et al.  Swelling Constrained Control of an Industrial Batch Reactor Using a Dedicated NMPC Environment: OptCon , 2009 .

[14]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[15]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[16]  Dirk Abel,et al.  Nonlinear MPC for a two-stage turbocharged gasoline engine airpath , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[17]  Hans Bock,et al.  Efficient Numerics for Nonlinear Model Predictive Control , 2010 .

[18]  H. Maurer,et al.  SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control , 2000 .

[19]  Toshiyuki Ohtsuka,et al.  A continuation/GMRES method for fast computation of nonlinear receding horizon control , 2004, Autom..

[20]  Hans Georg Bock,et al.  Sensitivity Generation in an Adaptive BDF-Method , 2006, HPSC.

[21]  Moritz Diehl,et al.  An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range , 2011, Autom..

[22]  Daniel P. Robinson,et al.  An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization , 2014, SIAM J. Optim..

[23]  H. Bock,et al.  Recent Advances in Parameteridentification Techniques for O.D.E. , 1983 .

[24]  Moritz Diehl,et al.  A parallel quadratic programming method for dynamic optimization problems , 2015, Math. Program. Comput..

[25]  Victor M. Zavala,et al.  Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems , 2008 .

[26]  Carl D. Laird,et al.  An interior-point method for efficient solution of block-structured NLP problems using an implicit Schur-complement decomposition , 2014, Comput. Chem. Eng..

[27]  Theodore A. Bickart,et al.  An Efficient Solution Process for Implicit Runge–Kutta Methods , 1977 .

[28]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[29]  Christian Kirches,et al.  qpOASES: a parametric active-set algorithm for quadratic programming , 2014, Mathematical Programming Computation.

[30]  G. Martin,et al.  Nonlinear model predictive control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[31]  Ernst Hairer,et al.  Implementation of Implicit Runge-Kutta Methods , 1996 .

[32]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[33]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[34]  Stephen J. Wright,et al.  Object-oriented software for quadratic programming , 2003, TOMS.

[35]  A. Potschka A direct method for the numerical solution of optimization problems with time-periodic PDE constraints , 2011 .

[36]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[37]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications , 2003, Comput. Chem. Eng..

[38]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[39]  計測自動制御学会 計測自動制御学会論文集 = Transactions of the Society of Instrument and Control Engineers , 1965 .

[40]  Peter Deuflhard,et al.  Numerical Treatment of Inverse Problems in Differential and Integral Equations: Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 - September 3, 1982 , 2012 .

[41]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[42]  William W. Hager,et al.  Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction , 2015, J. Frankl. Inst..

[43]  Andrea Walther,et al.  An adjoint-based SQP algorithm with quasi-Newton Jacobian updates for inequality constrained optimization , 2010, Optim. Methods Softw..

[44]  Moritz Diehl,et al.  Lifted implicit integrators for direct optimal control , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[45]  Hans Bock,et al.  Constrained Optimal Feedback Control of Systems Governed by Large Differential Algebraic Equations , 2007 .

[46]  R. Pytlak Numerical Methods for Optimal Control Problems with State Constraints , 1999 .

[47]  Moritz Diehl,et al.  Efficient NMPC for nonlinear models with linear subsystems , 2013, 52nd IEEE Conference on Decision and Control.

[48]  Moritz Diehl,et al.  The Lifted Newton Method and Its Application in Optimization , 2009, SIAM J. Optim..

[49]  Jan Swevers,et al.  Real-time nonlinear MPC and MHE for a large-scale mechatronic application , 2015 .

[50]  John Bagterp Jørgensen,et al.  High-performance small-scale solvers for linear Model Predictive Control , 2014, 2014 European Control Conference (ECC).

[51]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[52]  Yang Wang,et al.  Code generation for receding horizon control , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[53]  Victor M. Zavala,et al.  Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..

[54]  Akira Kodama,et al.  Automatic Code Generation System for Nonlinear Receding Horizon Control , 2002 .

[55]  Moritz Diehl,et al.  A quadratically convergent inexact SQP method for optimal control of differential algebraic equations , 2013 .

[56]  C. G. Broyden Quasi-Newton methods and their application to function minimisation , 1967 .

[57]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[58]  Moritz Diehl,et al.  Inexact Newton-Type Optimization with Iterated Sensitivities , 2018, SIAM J. Optim..

[59]  L. Biegler,et al.  A quasi‐sequential approach to large‐scale dynamic optimization problems , 2006 .

[60]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[61]  Brian C. Fabien,et al.  dsoa: The implementation of a dynamic system optimization algorithm , 2010 .

[62]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[63]  Moritz Diehl,et al.  CasADi -- A symbolic package for automatic differentiation and optimal control , 2012 .

[64]  Moritz Diehl,et al.  Symmetric Hessian propagation for lifted collocation integrators in direct Optimal Control , 2016, 2016 American Control Conference (ACC).

[65]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[66]  Moritz Diehl,et al.  Block Condensing for Fast Nonlinear MPC with the Dual Newton Strategy , 2015 .

[67]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[68]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[69]  M. Diehl,et al.  Fast NMPC of a chain of masses connected by springs , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[70]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[71]  Carl D. Laird,et al.  Efficient parallel solution of large-scale nonlinear dynamic optimization problems , 2014, Comput. Optim. Appl..

[72]  Anil V. Rao,et al.  A ph mesh refinement method for optimal control , 2015 .