Robust PID controller design using BMI
暂无分享,去创建一个
[1] Karolos M. Grigoriadis,et al. A Unified Algebraic Approach To Control Design , 1997 .
[2] J. Tsitsiklis,et al. NP-hardness of some linear control design problems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[3] Vojtech Veselý,et al. Robust Output Feedback Design of Discrete-Time Systems - Linear Matrix Inequality Methods , 2003 .
[4] Vojtech Veselý,et al. Robust Output Feedback Control Synthesis: LMI Approach , 2003 .
[5] P. Apkarian,et al. A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities , 2000, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
[6] R. Skelton,et al. A convexifying algorithm for the design of structured linear controllers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).
[7] Min-Sen Chiu,et al. Robust PID controller design via LMI approach , 2002 .
[8] R. Skelton,et al. An LMI optimization approach for structured linear controllers , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[9] Vojtech Veselý,et al. Robust stability conditions for polytopic systems , 2005, Int. J. Syst. Sci..
[10] J. Bernussou,et al. A new robust D-stability condition for real convex polytopic uncertainty , 2000 .
[11] J. Tsitsiklis,et al. NP-Hardness of Some Linear Control Design Problems , 1997 .
[12] Vojtech Veselý,et al. ROBUST PID DECENTRALIZED CONTROLLER DESIGN USING LMI , 2006 .
[13] J. Geromel,et al. A new discrete-time robust stability condition , 1999 .
[14] V. Vesely,et al. Non-iterative LMI output feedback controller design , 2007 .
[15] Dimitri Peaucelle,et al. Positive polynomial matrices and improved LMI robustness conditions , 2003, Autom..
[16] K. Goh,et al. Robust synthesis via bilinear matrix inequalities , 1996 .
[17] R. Braatz,et al. A tutorial on linear and bilinear matrix inequalities , 2000 .
[18] Tong Heng Lee,et al. On the design of multivariable PID controllers via LMI approach , 2002, Autom..
[19] Éva Gyurkovics,et al. Stabilisation of discrete-time interconnected systems under control constraints , 2000 .
[20] D. Henrion,et al. Positive polynomial matrices and improved LMI robustness conditions , 2003, at - Automatisierungstechnik.
[21] M. C. D. Oliveiraa,et al. A new discrete-time robust stability condition ( , 1999 .
[22] Vojtech Veselý,et al. A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems , 2003, Kybernetika.
[23] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[24] Karolos M. Grigoriadis,et al. A unified algebraic approach to linear control design , 1998 .