Robust PID controller design using BMI

The new BMI based method for robust stabilizing PID controller design for linear uncertain system is proposed. The general constrained structure of controller matrix is considered which is appropriate both for output feedback and decentralized control. The developed control design scheme aims at robust stabilization with guaranteed cost. The extended quadratic performance index is used including the first derivative of the state vector to damp oscillations. The obtained results use parameter-dependent Lyapunov function to reduce conservatism of robust stability conditions.

[1]  Karolos M. Grigoriadis,et al.  A Unified Algebraic Approach To Control Design , 1997 .

[2]  J. Tsitsiklis,et al.  NP-hardness of some linear control design problems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[3]  Vojtech Veselý,et al.  Robust Output Feedback Design of Discrete-Time Systems - Linear Matrix Inequality Methods , 2003 .

[4]  Vojtech Veselý,et al.  Robust Output Feedback Control Synthesis: LMI Approach , 2003 .

[5]  P. Apkarian,et al.  A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities , 2000, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[6]  R. Skelton,et al.  A convexifying algorithm for the design of structured linear controllers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[7]  Min-Sen Chiu,et al.  Robust PID controller design via LMI approach , 2002 .

[8]  R. Skelton,et al.  An LMI optimization approach for structured linear controllers , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[9]  Vojtech Veselý,et al.  Robust stability conditions for polytopic systems , 2005, Int. J. Syst. Sci..

[10]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[11]  J. Tsitsiklis,et al.  NP-Hardness of Some Linear Control Design Problems , 1997 .

[12]  Vojtech Veselý,et al.  ROBUST PID DECENTRALIZED CONTROLLER DESIGN USING LMI , 2006 .

[13]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[14]  V. Vesely,et al.  Non-iterative LMI output feedback controller design , 2007 .

[15]  Dimitri Peaucelle,et al.  Positive polynomial matrices and improved LMI robustness conditions , 2003, Autom..

[16]  K. Goh,et al.  Robust synthesis via bilinear matrix inequalities , 1996 .

[17]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[18]  Tong Heng Lee,et al.  On the design of multivariable PID controllers via LMI approach , 2002, Autom..

[19]  Éva Gyurkovics,et al.  Stabilisation of discrete-time interconnected systems under control constraints , 2000 .

[20]  D. Henrion,et al.  Positive polynomial matrices and improved LMI robustness conditions , 2003, at - Automatisierungstechnik.

[21]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[22]  Vojtech Veselý,et al.  A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems , 2003, Kybernetika.

[23]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[24]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .