Absence of diffuse double layer effect on the vibrational properties and oxidation of chemisorbed carbon monoxide on a Pt(111) electrode.

[1]  Kathleen A. Schwarz,et al.  Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO-Solvent Gap. , 2017, The journal of physical chemistry letters.

[2]  Akira Yamakata,et al.  Cation-dependent restructure of the electric double layer on CO-covered Pt electrodes: Difference between hydrophilic and hydrophobic cations , 2017 .

[3]  Marc T. M. Koper,et al.  Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy , 2016, Nature Communications.

[4]  J. Connell,et al.  Double layer effects in electrocatalysis: The oxygen reduction reaction and ethanol oxidation reaction on Au(1 1 1), Pt(1 1 1) and Ir(1 1 1) in alkaline media containing Na and Li cations , 2016 .

[5]  Cheng Hao Wu,et al.  The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy , 2014, Science.

[6]  A. Anderson,et al.  Trends with coverage and pH in Stark tuning rates for CO on Pt(1 1 1) electrodes , 2013 .

[7]  V. Climent,et al.  On the behavior of the Pt(1 0 0) and vicinal surfaces in alkaline media , 2011 .

[8]  R. Compton,et al.  Influence of the diffuse double layer on steady-state voltammetry , 2011 .

[9]  Stanley C. S. Lai,et al.  Mechanisms of the Oxidation of Carbon Monoxide and Small Organic Molecules at Metal Electrodes , 2008 .

[10]  R. Nazmutdinov,et al.  Role of charge distribution in the reactant and product in double layer effects: construction of corrected Tafel plots. , 2005, The journal of physical chemistry. A.

[11]  A. Cuesta,et al.  Measurement of the surface charge density of CO-saturated Pt(1 1 1) electrodes as a function of potential: the potential of zero charge of Pt(1 1 1) , 2004 .

[12]  P. Ross,et al.  Surface Electrochemistry of CO on Pt(111): Anion Effects , 2002 .

[13]  M. J. Weaver,et al.  Field-dependent electrode-chemisorbate bonding: sensitivity of vibrational stark effect and binding energetics to nature of surface coordination. , 2002, Journal of the American Chemical Society.

[14]  O. Petrii,et al.  Frumkin Correction: Microscopic View , 2002 .

[15]  D. Gavaghan,et al.  Extended electron transfer and the Frumkin correction , 2000 .

[16]  R. A. Santen,et al.  Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces , 2000 .

[17]  O. Petrii,et al.  Quantum chemical modelling of the heterogeneous electron transfer: from qualitative analysis to a polarization curve , 2000 .

[18]  E. Oldfield,et al.  A Detailed NMR-Based Model for CO on Pt Catalysts in an Electrochemical Environment: Shifts, Relaxation, Back-Bonding, and the Fermi-Level Local Density of States , 2000 .

[19]  R. A. Santen,et al.  Electric field effects on CO and NO adsorption at the Pt(111) surface , 1999 .

[20]  M. J. Weaver,et al.  A concerted assessment of potential-dependent vibrational frequencies for nitric oxide and carbon monoxide adlayers on low-index platinum-group surfaces in electrochemical compared with ultrahigh vacuum environments: Structural and electrostatic implications , 1999 .

[21]  M. J. Weaver Potentials of Zero Charge for Platinum(111)−Aqueous Interfaces: A Combined Assessment from In-Situ and Ultrahigh-Vacuum Measurements , 1998 .

[22]  N. Lewis,et al.  Frumkin corrections for heterogeneous rate constants at semiconducting electrodes , 1997 .

[23]  K. Ataka,et al.  Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy , 1996 .

[24]  M. J. Weaver,et al.  Role of the Double-Layer Cation on the Potential-Dependent Stretching Frequencies and Binding Geometries of Carbon Monoxide at Platinum-Nonaqueous Interfaces , 1992 .

[25]  Masatoki Ito,et al.  Infrared spectra of CO adsorbed on Pt(100), Pt(111), and Pt(110) electrode surfaces , 1991 .

[26]  J. Clavilier,et al.  Electrochemical monitoring of the thermal reordering of platinum single-crystal surfaces after metallographic polishing from the early stage to the equilibrium surfaces , 1990 .

[27]  Roger Parsons,et al.  The electrical double layer: recent experimental and theoretical developments , 1990 .

[28]  D. K. Lambert Vibrational Stark effect of CO on Ni(100), and CO in the aqueous double layer: Experiment, theory, and models , 1988 .

[29]  J. Nørskov,et al.  Changes in the vibrational frequencies of adsorbed molecules due to an applied electric field , 1984 .

[30]  A. Bradshaw,et al.  The adsorption of CO on Pt(111) studied by infrared reflection—Absortion spectroscopy , 1983 .

[31]  M. Sluyters-Rehbach,et al.  ELECTRODE KINETICS AND DOUBLE LAYER STRUCTURE , 1969 .

[32]  Syed M. Ahmed Studies of the double layer at oxide-solution interface , 1968 .

[33]  P. Delahay,et al.  Structure of the Double Layer and Electrode Processes1 , 1958 .

[34]  A. Frumkin,et al.  Wasserstoffüberspannung und Struktur der Doppelschicht , 1933 .