Limits on the cosmic neutrino background

We present the first comprehensive discussion of constraints on the cosmic neutrino background (CνB) overdensity, including theoretical, experimental and cosmological limits for a wide range of neutrino masses and temperatures. Additionally, we calculate the sensitivities of future direct and indirect relic neutrino detection experiments and compare the results with the existing constraints, extending several previous analyses by taking into account that the CνB reference frame may not be aligned with that of the Earth. The Pauli exclusion principle strongly disfavours overdensities ην ≫ 1 at small neutrino masses, but allows for overdensities ην ≲ 125 at the KATRIN mass bound mν ≃ 0.8 eV. On the other hand, cosmology strongly favours 0.2 ≲ ην ≲ 3.5 in all scenarios. We find that direct detection proposals are capable of observing the CνB without a significant overdensity for neutrino masses mν ≳ 50 meV, but require an overdensity ην ≳ 3 × 105 outside of this range. We also demonstrate that relic neutrino detection proposals are sensitive to the helicity composition of the CνB, whilst some may be able to distinguish between Dirac and Majorana neutrinos.

[1]  A. Ibarra,et al.  Primordial lepton asymmetries in the precision cosmology era: Current status and future sensitivities from BBN and the CMB , 2022, Physical Review D.

[2]  Konstantin Asteriadis,et al.  Bremsstrahlung from the Cosmic Neutrino Background , 2022, 2208.01207.

[3]  V. Brdar,et al.  A new probe of relic neutrino clustering using cosmogenic neutrinos , 2022, Physics Letters B.

[4]  F. Montanet,et al.  Diffuse Flux of Ultra-high-energy Photons from Cosmic-Ray Interactions in the Disk of the Galaxy and Implications for the Search for Decaying Super-heavy Dark Matter , 2022, The Astrophysical Journal.

[5]  A. Lokhov,et al.  KATRIN: status and prospects for the neutrino mass and beyond , 2022, Journal of Physics G: Nuclear and Particle Physics.

[6]  A. Lokhov,et al.  New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs. , 2022, Physical review letters.

[7]  The Katrin Collaboration Direct neutrino-mass measurement with sub-electronvolt sensitivity , 2022 .

[8]  R. Bhandari,et al.  Updated evaluation of potential ultra-low Q value $\beta$-decay candidates , 2022, 2201.08790.

[9]  R. B. Barreiro,et al.  Improved limits on the tensor-to-scalar ratio using BICEP and Planck , 2021, 2112.07961.

[10]  A. Soni,et al.  Meeting the challenges of relic neutrinos , 2021, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).

[11]  T. Schwetz,et al.  Cosmic neutrino background detection in large-neutrino-mass cosmologies , 2021, Physical Review D.

[12]  C. Pitrou,et al.  Primordial neutrino asymmetry evolution with full mean-field effects and collisions , 2021, Journal of Cosmology and Astroparticle Physics.

[13]  R. W. Ogburn,et al.  Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. , 2021, Physical review letters.

[14]  Jack D. Shergold Updated detection prospects for relic neutrinos using coherent scattering , 2021, Journal of Cosmology and Astroparticle Physics.

[15]  A. Colijn,et al.  Implementation and optimization of the PTOLEMY transverse drift electromagnetic filter , 2021, Journal of Instrumentation.

[16]  B. Jones The Physics of Neutrinoless Double Beta Decay: A Primer , 2021, 2108.09364.

[17]  A. Singhal,et al.  First direct evidence of the CNO fusion cycle in the Sun with Borexino , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[18]  A. Lokhov,et al.  First direct neutrino-mass measurement with sub-eV sensitivity , 2021, 2105.08533.

[19]  M. Bauer,et al.  Relic neutrinos at accelerator experiments , 2021, Physical Review D.

[20]  M. Kamionkowski,et al.  Searching for the Radiative Decay of the Cosmic Neutrino Background with Line-Intensity Mapping. , 2021, Physical review letters.

[21]  I. Tamborra,et al.  Grand unified neutrino spectrum at Earth: Sources and spectral components , 2019, Reviews of Modern Physics.

[22]  M. Drewes,et al.  Towards a precision calculation of $N_{\rm eff}$ in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2020, 2012.02726.

[23]  M. Quartin,et al.  First Constraints on the Intrinsic CMB Dipole and Our Velocity with Doppler and Aberration. , 2020, Physical review letters.

[24]  N. Yoshida,et al.  Cosmological Vlasov–Poisson Simulations of Structure Formation with Relic Neutrinos: Nonlinear Clustering and the Neutrino Mass , 2020, The Astrophysical Journal.

[25]  Adrian T. Lee,et al.  CMB-S4: Forecasting Constraints on Primordial Gravitational Waves , 2020, The Astrophysical Journal.

[26]  L. V. Nguyen,et al.  IceCube-Gen2: the window to the extreme Universe , 2020, Journal of Physics G: Nuclear and Particle Physics.

[27]  C. Pitrou,et al.  Neutrino decoupling including flavour oscillations and primordial nucleosynthesis , 2020, Journal of Cosmology and Astroparticle Physics.

[28]  T. Schwetz,et al.  The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.

[29]  C. S. Nugroho,et al.  Light dark matter scattering in gravitational wave detectors , 2020, The European Physical Journal C.

[30]  N. Rius,et al.  Relaxing cosmological neutrino mass bounds with unstable neutrinos , 2020, Journal of High Energy Physics.

[31]  R. B. Barreiro,et al.  Planck intermediate results , 2020, Astronomy & Astrophysics.

[32]  Masahide Yamaguchi,et al.  A precision calculation of relic neutrino decoupling , 2020, Journal of Cosmology and Astroparticle Physics.

[33]  H. Kobayashi,et al.  The First VERA Astrometry Catalog , 2020, Publications of the Astronomical Society of Japan.

[34]  Vladyslav Shtabovenko,et al.  FeynCalc 9.3: New features and improvements , 2020, Comput. Phys. Commun..

[35]  R. Bhandari,et al.  Identification and investigation of possible ultra-low Q value β decay candidates , 2019, Hyperfine Interactions.

[36]  P. Salas,et al.  Relic neutrino clustering in the Milky Way , 2019, 1911.09603.

[37]  M. Drewes,et al.  Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model: the QED equation of state , 2019, Journal of Cosmology and Astroparticle Physics.

[38]  J. Lesgourgues,et al.  Neutrino clustering in the Milky Way and beyond , 2019, Journal of Cosmology and Astroparticle Physics.

[39]  B. A. Boom,et al.  A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals , 2019, Classical and Quantum Gravity.

[40]  J. Austermann,et al.  Sensitivity of the Prime-Cam Instrument on the CCAT-Prime Telescope , 2019, Journal of Low Temperature Physics.

[41]  Sean Bryan,et al.  The Atacama Large Aperture Submillimeter Telescope (AtLAST) , 2019, 1907.04756.

[42]  E. Akhmedov Relic neutrino detection through angular correlations in inverse β-decay , 2019, Journal of Cosmology and Astroparticle Physics.

[43]  Edward J. Wollack,et al.  Removal of Galactic foregrounds for the Simons Observatory primordial gravitational wave search , 2019, 1905.08888.

[44]  A. Slosar,et al.  First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations , 2019, Nature Physics.

[45]  A. Colijn,et al.  Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case , 2019, Journal of Cosmology and Astroparticle Physics.

[46]  M. Geller,et al.  Detecting a secondary cosmic neutrino background from Majoron decays in neutrino capture experiments , 2018, Physical Review D.

[47]  P. Garcia-Abia,et al.  A design for an electromagnetic filter for precision energy measurements at the tritium endpoint , 2018, Progress in Particle and Nuclear Physics.

[48]  A. D. Ludovico,et al.  Comprehensive measurement of pp-chain solar neutrinos , 2018, Nature.

[49]  I. K. Wehus,et al.  Joint Power Spectrum and Voxel Intensity Distribution Forecast on the CO Luminosity Function with COMAP , 2018, The Astrophysical Journal.

[50]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[51]  F. Pandolfi,et al.  PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter , 2018, 1808.01892.

[52]  M. Lindner,et al.  Coherent scattering and macroscopic coherence: implications for neutrino, dark matter and axion detection , 2018, Journal of High Energy Physics.

[53]  M. Ahlers,et al.  Probing particle physics with IceCube , 2018, The European Physical Journal C.

[54]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[55]  D. Green,et al.  Searching for light relics with large-scale structure , 2017, Journal of Cosmology and Astroparticle Physics.

[56]  Alexander Bonilla,et al.  Probing the properties of relic neutrinos using the cosmic microwave background, the Hubble Space Telescope and galaxy clusters , 2017, 1710.10264.

[57]  T. Hebbeker,et al.  Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV , 2017, Science.

[58]  J. Lesgourgues,et al.  Calculation of the local density of relic neutrinos , 2017, 1706.09850.

[59]  V. Domcke,et al.  Detection prospects for the Cosmic Neutrino Background using laser interferometers , 2017, 1703.08629.

[60]  S. Basu,et al.  A New Generation of Standard Solar Models , 2016, 1611.09867.

[61]  G. Barenboim,et al.  Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology , 2016, 1609.03200.

[62]  G. Barenboim,et al.  Resurrection of large lepton number asymmetries from neutrino flavor oscillations , 2016, 1609.01584.

[63]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[64]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[65]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[66]  W. Fischer,et al.  Analysis and modeling of proton beam loss and emittance growth in the Relativistic Heavy Ion Collider , 2016 .

[67]  S. Xue,et al.  B-mode polarization of the CMB and the cosmic neutrino background , 2016, 1602.00237.

[68]  Frederik Orellana,et al.  New developments in FeynCalc 9.0 , 2016, Comput. Phys. Commun..

[69]  C. G. Sheu,et al.  Nuclear Data Sheets for A = 3 , 2015 .

[70]  P. Vogel How difficult it would be to detect cosmic neutrino background , 2015 .

[71]  P. T. Surukuchi,et al.  The Project 8 Neutrino Mass Experiment , 2015, 2203.07349.

[72]  K. Olive,et al.  The effects of He I λ10830 on helium abundance determinations , 2015, 1503.08146.

[73]  D. Straub,et al.  B →Vℓ+ℓ− in the Standard Model from light-cone sum rules , 2015, 1503.05534.

[74]  J. Samsing EXTRACTING PERIODIC TRANSIT SIGNALS FROM NOISY LIGHT CURVES USING FOURIER SERIES , 2015, 1503.03504.

[75]  B. Alpert,et al.  HOLMES , 2015, The European Physical Journal. C, Particles and Fields.

[76]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[77]  N. Sasao,et al.  Experimental method of detecting relic neutrino by atomic de-excitation , 2014, 1409.3648.

[78]  Ashley J. Ross,et al.  The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.

[79]  Joss Bland-Hawthorn,et al.  ON THE SHOULDERS OF GIANTS: PROPERTIES OF THE STELLAR HALO AND THE MILKY WAY MASS DISTRIBUTION , 2014, 1408.1787.

[80]  S. Xue,et al.  Photon-neutrino scattering and the B-mode spectrum of CMB photons , 2014, 1406.6213.

[81]  C. Lunardini,et al.  Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential , 2014, 1405.7654.

[82]  S. Xue,et al.  Using strong intense lasers to probe sterile neutrinos , 2014, 1403.7327.

[83]  C. Giunti,et al.  Neutrino electromagnetic interactions: A window to new physics , 2014, 1403.6344.

[84]  R. Mohammadi Evidence for cosmic neutrino background from CMB circular polarization , 2013, 1312.2199.

[85]  Adam D. Myers,et al.  Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations , 2013, 1311.1767.

[86]  N. Sasao,et al.  Radiative emission of neutrino pair from nucleus and inner core electrons in heavy atoms , 2013, 1310.6472.

[87]  D. Spergel,et al.  Measuring the thermal Sunyaev-Zel'dovich effect through the cross correlation of Planck and WMAP maps with ROSAT galaxy cluster catalogs , 2013, 1309.3282.

[88]  A. Hopkins,et al.  Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield , 2013, 1307.4738.

[89]  K. Blaum,et al.  The Electron Capture $$^{163}$$163Ho Experiment ECHo , 2013, 1309.5214.

[90]  C. A. Oxborrow,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[91]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[92]  N. Sasao Neutrino Spectroscopy with atoms , 2013 .

[93]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[94]  I. Nakano,et al.  Neutrino spectroscopy with atoms and molecules , 2012, 1211.4904.

[95]  N. Sasao,et al.  Observables in Neutrino Mass Spectroscopy Using Atoms , 2012, 1209.4808.

[96]  A. Studenikin,et al.  Millicharged neutrino with anomalous magnetic moment in rotating magnetized matter , 2012, 1209.3245.

[97]  G. P. Zeller,et al.  From eV to EeV: Neutrino Cross Sections Across Energy Scales , 2012, 1305.7513.

[98]  M. Ahlers,et al.  Minimal cosmogenic neutrinos , 2012, 1208.4181.

[99]  J. Gundlach,et al.  Torsion-balance tests of the weak equivalence principle , 2012, 1207.2442.

[100]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[101]  N. Sasao,et al.  Dynamics of two-photon paired superradiance , 2012, 1203.5394.

[102]  M. Lueker,et al.  COSMOLOGICAL CONSTRAINTS FROM SUNYAEV–ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg2 OF THE SOUTH POLE TELESCOPE SURVEY , 2011, 1112.5435.

[103]  G. Miele,et al.  Updated BBN bounds on the cosmological lepton asymmetry for non-zero 13 , 2011, 1110.4335.

[104]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[105]  M. Blanton,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS: MARGINALIZING OVER THE PHYSICS OF GALAXY FORMATION , 2013, 1306.4686.

[106]  L. Amendola,et al.  Measuring our peculiar velocity on the CMB with high-multipole off-diagonal correlations , 2010, 1008.1183.

[107]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[108]  IfA,et al.  The Observed Growth of Massive Galaxy Clusters I: Statistical Methods and Cosmological Constraints , 2009, 0909.3098.

[109]  M. Messina,et al.  Low energy antineutrino detection using neutrino capture on electron capture decaying nuclei , 2009, 0903.1217.

[110]  J. Frieman,et al.  COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG , 2009, 0902.3702.

[111]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[112]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[113]  H. Hoekstra,et al.  THE X-RAY CLUSTER NORMALIZATION OF THE MATTER POWER SPECTRUM , 2008, 0809.3832.

[114]  et al,et al.  The Borexino detector at the Laboratori Nazionali del Gran Sasso , 2008, 0806.2400.

[115]  I. Nakano,et al.  Macro-coherent two photon and radiative neutrino pair emission , 2008, 0805.1970.

[116]  P. Vogel,et al.  Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei , 2007, 0710.5312.

[117]  J. Valle,et al.  Exact relativistic beta decay endpoint spectrum , 2007, 0706.0897.

[118]  M. Messina,et al.  Probing low energy neutrino backgrounds with neutrino capture on beta decaying nuclei , 2007, hep-ph/0703075.

[119]  M. Yoshimura Neutrino pair emission from excited atoms , 2006, hep-ph/0611362.

[120]  S. Barwick,et al.  Constraints on cosmic neutrino fluxes from the Antarctic Impulsive Transient Antenna experiment. , 2006, Physical review letters.

[121]  S. Barwick,et al.  Constraints on cosmic neutrino fluxes from the Antarctic Impulsive Transient Antenna experiment. , 2005, Physical review letters.

[122]  G. Gelmini Prospect for Relic Neutrino Searches , 2004, hep-ph/0412305.

[123]  A. Ringwald,et al.  Gravitational clustering of relic neutrinos and implications for their detection , 2004, hep-ph/0408241.

[124]  A. Ringwald,et al.  Relic neutrino absorption spectroscopy , 2004, hep-ph/0401203.

[125]  U. Seljak,et al.  Signatures of relativistic neutrinos in CMB anisotropy and matter clustering , 2003, astro-ph/0310198.

[126]  Z. Fodor,et al.  Determination of absolute neutrino masses from bursts of Z bosons in cosmic rays. , 2002, Physical review letters.

[127]  Z. Fodor,et al.  Relic neutrino masses and the highest energy cosmic rays , 2002, hep-ph/0203198.

[128]  V. Kuzmin,et al.  Ultrahigh-energy cosmic rays from neutrino emitting acceleration sources? , 2001, hep-ph/0112351.

[129]  G. Gelmini,et al.  Expected signals in relic neutrino detectors , 2001, hep-ph/0107027.

[130]  P. Frampton,et al.  Relic Neutrinos and Z-Resonance Mechanism for Highest Energy Cosmic Rays , 2000, astro-ph/0002089.

[131]  T. Weiler Relic Neutrinos, Z-Bursts, and Cosmic Rays above 10^{20} eV , 1999, hep-ph/9910316.

[132]  G. Raffelt Limits on neutrino electromagnetic properties — an update , 1999 .

[133]  B. Mele,et al.  Ultra-High-Energy Neutrino Scattering onto Relic Light Neutrinos in the Galactic Halo as a Possible Source of the Highest Energy Extragalactic Cosmic Rays , 1999 .

[134]  C. Hagmann Cosmic neutrinos and their detection , 1999, astro-ph/9905258.

[135]  B. Stern,et al.  Neutrino mass and anomaly in the tritium beta-spectrum. Results of the “Troitsk ν-mass” experiment , 1999 .

[136]  O. Gnedin,et al.  Cosmological Neutrino Background Revisited , 1997, astro-ph/9712199.

[137]  I. Sekachev,et al.  Results of the Troitsk experiment on the search for the electron antineutrino rest mass in tritium beta-decay , 1995 .

[138]  G. Steigman,et al.  Cosmological constraints on neutrino degeneracy , 1992 .

[139]  Gluza,et al.  Feynman rules for Majorana-neutrino interactions. , 1992, Physical review. D, Particles and fields.

[140]  Stephenson,et al.  Limit on nu -bare mass from observation of the beta decay of molecular tritium. , 1991, Physical review letters.

[141]  Ansgar Denner,et al.  Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .

[142]  R. Malaney,et al.  Neutrino Oscillations and the Leptonic Charge of the Universe , 1991 .

[143]  Gould,et al.  Can cosmic neutrinos be detected by bremsstrahlung from a metal? , 1991, Physical review. D, Particles and fields.

[144]  P. Saulson,et al.  Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.

[145]  Raffelt Neutrino radiative-lifetime limits from the absence of solar gamma rays. , 1985, Physical review. D, Particles and fields.

[146]  J. D. Lewin,et al.  Coherent interaction of galactic neutrinos with material targets , 1983 .

[147]  R. Shrock Electromagnetic Properties and Decays of Dirac and Majorana Neutrinos in a General Class of Gauge Theories , 1982 .

[148]  V. Braginskii,et al.  POSSIBILITY OF DETECTING RELICT MASSIVE NEUTRINOS , 1982 .

[149]  N. Cabibbo,et al.  The vanishing of order-G mechanical effects of cosmic massive neutrinos on bulk matter , 1982 .

[150]  L. Wolfenstein,et al.  Radiative Decays of Massive Neutrinos , 1982 .

[151]  R. R. Lewis Coherent detector for low-energy neutrinos , 1980 .

[152]  S. Tremaine,et al.  Dynamical Role of Light Neutral Leptons in Cosmology , 1979 .

[153]  L. Stodolsky Speculations on Detection of the "Neutrino Sea." , 1975 .

[154]  R. Opher Coherent scattering of cosmic neutrinos , 1974 .

[155]  David T. Fraebel,et al.  Upper limit of the spectrum of cosmic rays , 1966 .

[156]  K. Greisen End to the cosmic ray spectrum , 1966 .

[157]  S. Weinberg Universal neutrino degeneracy , 1962 .

[158]  M. Valli,et al.  Indications for a Nonzero Lepton Asymmetry in the Early Universe , 2022 .

[159]  C.,et al.  The Electron Capture 163 Ho Experiment , 2021 .

[160]  M. Drewes,et al.  Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2021, Journal of Cosmology and Astroparticle Physics.

[161]  Arnulf Quadt,et al.  Oxford University Press : Review of Particle Physics, 2020-2021 , 2020 .

[162]  F. Šimkovic,et al.  Beta Decay and the Cosmic Neutrino Background , 2014 .

[163]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples , 2014 .

[164]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .