Limits on the cosmic neutrino background
暂无分享,去创建一个
[1] A. Ibarra,et al. Primordial lepton asymmetries in the precision cosmology era: Current status and future sensitivities from BBN and the CMB , 2022, Physical Review D.
[2] Konstantin Asteriadis,et al. Bremsstrahlung from the Cosmic Neutrino Background , 2022, 2208.01207.
[3] V. Brdar,et al. A new probe of relic neutrino clustering using cosmogenic neutrinos , 2022, Physics Letters B.
[4] F. Montanet,et al. Diffuse Flux of Ultra-high-energy Photons from Cosmic-Ray Interactions in the Disk of the Galaxy and Implications for the Search for Decaying Super-heavy Dark Matter , 2022, The Astrophysical Journal.
[5] A. Lokhov,et al. KATRIN: status and prospects for the neutrino mass and beyond , 2022, Journal of Physics G: Nuclear and Particle Physics.
[6] A. Lokhov,et al. New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs. , 2022, Physical review letters.
[7] The Katrin Collaboration. Direct neutrino-mass measurement with sub-electronvolt sensitivity , 2022 .
[8] R. Bhandari,et al. Updated evaluation of potential ultra-low Q value $\beta$-decay candidates , 2022, 2201.08790.
[9] R. B. Barreiro,et al. Improved limits on the tensor-to-scalar ratio using BICEP and Planck , 2021, 2112.07961.
[10] A. Soni,et al. Meeting the challenges of relic neutrinos , 2021, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).
[11] T. Schwetz,et al. Cosmic neutrino background detection in large-neutrino-mass cosmologies , 2021, Physical Review D.
[12] C. Pitrou,et al. Primordial neutrino asymmetry evolution with full mean-field effects and collisions , 2021, Journal of Cosmology and Astroparticle Physics.
[13] R. W. Ogburn,et al. Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. , 2021, Physical review letters.
[14] Jack D. Shergold. Updated detection prospects for relic neutrinos using coherent scattering , 2021, Journal of Cosmology and Astroparticle Physics.
[15] A. Colijn,et al. Implementation and optimization of the PTOLEMY transverse drift electromagnetic filter , 2021, Journal of Instrumentation.
[16] B. Jones. The Physics of Neutrinoless Double Beta Decay: A Primer , 2021, 2108.09364.
[17] A. Singhal,et al. First direct evidence of the CNO fusion cycle in the Sun with Borexino , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).
[18] A. Lokhov,et al. First direct neutrino-mass measurement with sub-eV sensitivity , 2021, 2105.08533.
[19] M. Bauer,et al. Relic neutrinos at accelerator experiments , 2021, Physical Review D.
[20] M. Kamionkowski,et al. Searching for the Radiative Decay of the Cosmic Neutrino Background with Line-Intensity Mapping. , 2021, Physical review letters.
[21] I. Tamborra,et al. Grand unified neutrino spectrum at Earth: Sources and spectral components , 2019, Reviews of Modern Physics.
[22] M. Drewes,et al. Towards a precision calculation of $N_{\rm eff}$ in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2020, 2012.02726.
[23] M. Quartin,et al. First Constraints on the Intrinsic CMB Dipole and Our Velocity with Doppler and Aberration. , 2020, Physical review letters.
[24] N. Yoshida,et al. Cosmological Vlasov–Poisson Simulations of Structure Formation with Relic Neutrinos: Nonlinear Clustering and the Neutrino Mass , 2020, The Astrophysical Journal.
[25] Adrian T. Lee,et al. CMB-S4: Forecasting Constraints on Primordial Gravitational Waves , 2020, The Astrophysical Journal.
[26] L. V. Nguyen,et al. IceCube-Gen2: the window to the extreme Universe , 2020, Journal of Physics G: Nuclear and Particle Physics.
[27] C. Pitrou,et al. Neutrino decoupling including flavour oscillations and primordial nucleosynthesis , 2020, Journal of Cosmology and Astroparticle Physics.
[28] T. Schwetz,et al. The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.
[29] C. S. Nugroho,et al. Light dark matter scattering in gravitational wave detectors , 2020, The European Physical Journal C.
[30] N. Rius,et al. Relaxing cosmological neutrino mass bounds with unstable neutrinos , 2020, Journal of High Energy Physics.
[31] R. B. Barreiro,et al. Planck intermediate results , 2020, Astronomy & Astrophysics.
[32] Masahide Yamaguchi,et al. A precision calculation of relic neutrino decoupling , 2020, Journal of Cosmology and Astroparticle Physics.
[33] H. Kobayashi,et al. The First VERA Astrometry Catalog , 2020, Publications of the Astronomical Society of Japan.
[34] Vladyslav Shtabovenko,et al. FeynCalc 9.3: New features and improvements , 2020, Comput. Phys. Commun..
[35] R. Bhandari,et al. Identification and investigation of possible ultra-low Q value β decay candidates , 2019, Hyperfine Interactions.
[36] P. Salas,et al. Relic neutrino clustering in the Milky Way , 2019, 1911.09603.
[37] M. Drewes,et al. Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model: the QED equation of state , 2019, Journal of Cosmology and Astroparticle Physics.
[38] J. Lesgourgues,et al. Neutrino clustering in the Milky Way and beyond , 2019, Journal of Cosmology and Astroparticle Physics.
[39] B. A. Boom,et al. A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals , 2019, Classical and Quantum Gravity.
[40] J. Austermann,et al. Sensitivity of the Prime-Cam Instrument on the CCAT-Prime Telescope , 2019, Journal of Low Temperature Physics.
[41] Sean Bryan,et al. The Atacama Large Aperture Submillimeter Telescope (AtLAST) , 2019, 1907.04756.
[42] E. Akhmedov. Relic neutrino detection through angular correlations in inverse β-decay , 2019, Journal of Cosmology and Astroparticle Physics.
[43] Edward J. Wollack,et al. Removal of Galactic foregrounds for the Simons Observatory primordial gravitational wave search , 2019, 1905.08888.
[44] A. Slosar,et al. First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations , 2019, Nature Physics.
[45] A. Colijn,et al. Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case , 2019, Journal of Cosmology and Astroparticle Physics.
[46] M. Geller,et al. Detecting a secondary cosmic neutrino background from Majoron decays in neutrino capture experiments , 2018, Physical Review D.
[47] P. Garcia-Abia,et al. A design for an electromagnetic filter for precision energy measurements at the tritium endpoint , 2018, Progress in Particle and Nuclear Physics.
[48] A. D. Ludovico,et al. Comprehensive measurement of pp-chain solar neutrinos , 2018, Nature.
[49] I. K. Wehus,et al. Joint Power Spectrum and Voxel Intensity Distribution Forecast on the CO Luminosity Function with COMAP , 2018, The Astrophysical Journal.
[50] Edward J. Wollack,et al. The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.
[51] F. Pandolfi,et al. PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter , 2018, 1808.01892.
[52] M. Lindner,et al. Coherent scattering and macroscopic coherence: implications for neutrino, dark matter and axion detection , 2018, Journal of High Energy Physics.
[53] M. Ahlers,et al. Probing particle physics with IceCube , 2018, The European Physical Journal C.
[54] R. B. Barreiro,et al. Planck 2018 results , 2018, Astronomy & Astrophysics.
[55] D. Green,et al. Searching for light relics with large-scale structure , 2017, Journal of Cosmology and Astroparticle Physics.
[56] Alexander Bonilla,et al. Probing the properties of relic neutrinos using the cosmic microwave background, the Hubble Space Telescope and galaxy clusters , 2017, 1710.10264.
[57] T. Hebbeker,et al. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV , 2017, Science.
[58] J. Lesgourgues,et al. Calculation of the local density of relic neutrinos , 2017, 1706.09850.
[59] V. Domcke,et al. Detection prospects for the Cosmic Neutrino Background using laser interferometers , 2017, 1703.08629.
[60] S. Basu,et al. A New Generation of Standard Solar Models , 2016, 1611.09867.
[61] G. Barenboim,et al. Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology , 2016, 1609.03200.
[62] G. Barenboim,et al. Resurrection of large lepton number asymmetries from neutrino flavor oscillations , 2016, 1609.01584.
[63] M. Decowski,et al. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.
[64] W. M. Wood-Vasey,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.
[65] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[66] W. Fischer,et al. Analysis and modeling of proton beam loss and emittance growth in the Relativistic Heavy Ion Collider , 2016 .
[67] S. Xue,et al. B-mode polarization of the CMB and the cosmic neutrino background , 2016, 1602.00237.
[68] Frederik Orellana,et al. New developments in FeynCalc 9.0 , 2016, Comput. Phys. Commun..
[69] C. G. Sheu,et al. Nuclear Data Sheets for A = 3 , 2015 .
[70] P. Vogel. How difficult it would be to detect cosmic neutrino background , 2015 .
[71] P. T. Surukuchi,et al. The Project 8 Neutrino Mass Experiment , 2015, 2203.07349.
[72] K. Olive,et al. The effects of He I λ10830 on helium abundance determinations , 2015, 1503.08146.
[73] D. Straub,et al. B →Vℓ+ℓ− in the Standard Model from light-cone sum rules , 2015, 1503.05534.
[74] J. Samsing. EXTRACTING PERIODIC TRANSIT SIGNALS FROM NOISY LIGHT CURVES USING FOURIER SERIES , 2015, 1503.03504.
[75] B. Alpert,et al. HOLMES , 2015, The European Physical Journal. C, Particles and Fields.
[76] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[77] N. Sasao,et al. Experimental method of detecting relic neutrino by atomic de-excitation , 2014, 1409.3648.
[78] Ashley J. Ross,et al. The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.
[79] Joss Bland-Hawthorn,et al. ON THE SHOULDERS OF GIANTS: PROPERTIES OF THE STELLAR HALO AND THE MILKY WAY MASS DISTRIBUTION , 2014, 1408.1787.
[80] S. Xue,et al. Photon-neutrino scattering and the B-mode spectrum of CMB photons , 2014, 1406.6213.
[81] C. Lunardini,et al. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential , 2014, 1405.7654.
[82] S. Xue,et al. Using strong intense lasers to probe sterile neutrinos , 2014, 1403.7327.
[83] C. Giunti,et al. Neutrino electromagnetic interactions: A window to new physics , 2014, 1403.6344.
[84] R. Mohammadi. Evidence for cosmic neutrino background from CMB circular polarization , 2013, 1312.2199.
[85] Adam D. Myers,et al. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations , 2013, 1311.1767.
[86] N. Sasao,et al. Radiative emission of neutrino pair from nucleus and inner core electrons in heavy atoms , 2013, 1310.6472.
[87] D. Spergel,et al. Measuring the thermal Sunyaev-Zel'dovich effect through the cross correlation of Planck and WMAP maps with ROSAT galaxy cluster catalogs , 2013, 1309.3282.
[88] A. Hopkins,et al. Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield , 2013, 1307.4738.
[89] K. Blaum,et al. The Electron Capture $$^{163}$$163Ho Experiment ECHo , 2013, 1309.5214.
[90] C. A. Oxborrow,et al. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.
[91] Yannick Mellier,et al. CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.
[92] N. Sasao. Neutrino Spectroscopy with atoms , 2013 .
[93] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.
[94] I. Nakano,et al. Neutrino spectroscopy with atoms and molecules , 2012, 1211.4904.
[95] N. Sasao,et al. Observables in Neutrino Mass Spectroscopy Using Atoms , 2012, 1209.4808.
[96] A. Studenikin,et al. Millicharged neutrino with anomalous magnetic moment in rotating magnetized matter , 2012, 1209.3245.
[97] G. P. Zeller,et al. From eV to EeV: Neutrino Cross Sections Across Energy Scales , 2012, 1305.7513.
[98] M. Ahlers,et al. Minimal cosmogenic neutrinos , 2012, 1208.4181.
[99] J. Gundlach,et al. Torsion-balance tests of the weak equivalence principle , 2012, 1207.2442.
[100] L. G. Boté,et al. Laser Interferometer Space Antenna , 2012 .
[101] N. Sasao,et al. Dynamics of two-photon paired superradiance , 2012, 1203.5394.
[102] M. Lueker,et al. COSMOLOGICAL CONSTRAINTS FROM SUNYAEV–ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg2 OF THE SOUTH POLE TELESCOPE SURVEY , 2011, 1112.5435.
[103] G. Miele,et al. Updated BBN bounds on the cosmological lepton asymmetry for non-zero 13 , 2011, 1110.4335.
[104] Matthew Colless,et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.
[105] M. Blanton,et al. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS: MARGINALIZING OVER THE PHYSICS OF GALAXY FORMATION , 2013, 1306.4686.
[106] L. Amendola,et al. Measuring our peculiar velocity on the CMB with high-multipole off-diagonal correlations , 2010, 1008.1183.
[107] D. J. Fixsen,et al. THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.
[108] IfA,et al. The Observed Growth of Massive Galaxy Clusters I: Statistical Methods and Cosmological Constraints , 2009, 0909.3098.
[109] M. Messina,et al. Low energy antineutrino detection using neutrino capture on electron capture decaying nuclei , 2009, 0903.1217.
[110] J. Frieman,et al. COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG , 2009, 0902.3702.
[111] Alexey Vikhlinin,et al. CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.
[112] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[113] H. Hoekstra,et al. THE X-RAY CLUSTER NORMALIZATION OF THE MATTER POWER SPECTRUM , 2008, 0809.3832.
[114] et al,et al. The Borexino detector at the Laboratori Nazionali del Gran Sasso , 2008, 0806.2400.
[115] I. Nakano,et al. Macro-coherent two photon and radiative neutrino pair emission , 2008, 0805.1970.
[116] P. Vogel,et al. Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei , 2007, 0710.5312.
[117] J. Valle,et al. Exact relativistic beta decay endpoint spectrum , 2007, 0706.0897.
[118] M. Messina,et al. Probing low energy neutrino backgrounds with neutrino capture on beta decaying nuclei , 2007, hep-ph/0703075.
[119] M. Yoshimura. Neutrino pair emission from excited atoms , 2006, hep-ph/0611362.
[120] S. Barwick,et al. Constraints on cosmic neutrino fluxes from the Antarctic Impulsive Transient Antenna experiment. , 2006, Physical review letters.
[121] S. Barwick,et al. Constraints on cosmic neutrino fluxes from the Antarctic Impulsive Transient Antenna experiment. , 2005, Physical review letters.
[122] G. Gelmini. Prospect for Relic Neutrino Searches , 2004, hep-ph/0412305.
[123] A. Ringwald,et al. Gravitational clustering of relic neutrinos and implications for their detection , 2004, hep-ph/0408241.
[124] A. Ringwald,et al. Relic neutrino absorption spectroscopy , 2004, hep-ph/0401203.
[125] U. Seljak,et al. Signatures of relativistic neutrinos in CMB anisotropy and matter clustering , 2003, astro-ph/0310198.
[126] Z. Fodor,et al. Determination of absolute neutrino masses from bursts of Z bosons in cosmic rays. , 2002, Physical review letters.
[127] Z. Fodor,et al. Relic neutrino masses and the highest energy cosmic rays , 2002, hep-ph/0203198.
[128] V. Kuzmin,et al. Ultrahigh-energy cosmic rays from neutrino emitting acceleration sources? , 2001, hep-ph/0112351.
[129] G. Gelmini,et al. Expected signals in relic neutrino detectors , 2001, hep-ph/0107027.
[130] P. Frampton,et al. Relic Neutrinos and Z-Resonance Mechanism for Highest Energy Cosmic Rays , 2000, astro-ph/0002089.
[131] T. Weiler. Relic Neutrinos, Z-Bursts, and Cosmic Rays above 10^{20} eV , 1999, hep-ph/9910316.
[132] G. Raffelt. Limits on neutrino electromagnetic properties — an update , 1999 .
[133] B. Mele,et al. Ultra-High-Energy Neutrino Scattering onto Relic Light Neutrinos in the Galactic Halo as a Possible Source of the Highest Energy Extragalactic Cosmic Rays , 1999 .
[134] C. Hagmann. Cosmic neutrinos and their detection , 1999, astro-ph/9905258.
[135] B. Stern,et al. Neutrino mass and anomaly in the tritium beta-spectrum. Results of the “Troitsk ν-mass” experiment , 1999 .
[136] O. Gnedin,et al. Cosmological Neutrino Background Revisited , 1997, astro-ph/9712199.
[137] I. Sekachev,et al. Results of the Troitsk experiment on the search for the electron antineutrino rest mass in tritium beta-decay , 1995 .
[138] G. Steigman,et al. Cosmological constraints on neutrino degeneracy , 1992 .
[139] Gluza,et al. Feynman rules for Majorana-neutrino interactions. , 1992, Physical review. D, Particles and fields.
[140] Stephenson,et al. Limit on nu -bare mass from observation of the beta decay of molecular tritium. , 1991, Physical review letters.
[141] Ansgar Denner,et al. Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .
[142] R. Malaney,et al. Neutrino Oscillations and the Leptonic Charge of the Universe , 1991 .
[143] Gould,et al. Can cosmic neutrinos be detected by bremsstrahlung from a metal? , 1991, Physical review. D, Particles and fields.
[144] P. Saulson,et al. Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.
[145] Raffelt. Neutrino radiative-lifetime limits from the absence of solar gamma rays. , 1985, Physical review. D, Particles and fields.
[146] J. D. Lewin,et al. Coherent interaction of galactic neutrinos with material targets , 1983 .
[147] R. Shrock. Electromagnetic Properties and Decays of Dirac and Majorana Neutrinos in a General Class of Gauge Theories , 1982 .
[148] V. Braginskii,et al. POSSIBILITY OF DETECTING RELICT MASSIVE NEUTRINOS , 1982 .
[149] N. Cabibbo,et al. The vanishing of order-G mechanical effects of cosmic massive neutrinos on bulk matter , 1982 .
[150] L. Wolfenstein,et al. Radiative Decays of Massive Neutrinos , 1982 .
[151] R. R. Lewis. Coherent detector for low-energy neutrinos , 1980 .
[152] S. Tremaine,et al. Dynamical Role of Light Neutral Leptons in Cosmology , 1979 .
[153] L. Stodolsky. Speculations on Detection of the "Neutrino Sea." , 1975 .
[154] R. Opher. Coherent scattering of cosmic neutrinos , 1974 .
[155] David T. Fraebel,et al. Upper limit of the spectrum of cosmic rays , 1966 .
[156] K. Greisen. End to the cosmic ray spectrum , 1966 .
[157] S. Weinberg. Universal neutrino degeneracy , 1962 .
[158] M. Valli,et al. Indications for a Nonzero Lepton Asymmetry in the Early Universe , 2022 .
[159] C.,et al. The Electron Capture 163 Ho Experiment , 2021 .
[160] M. Drewes,et al. Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2021, Journal of Cosmology and Astroparticle Physics.
[161] Arnulf Quadt,et al. Oxford University Press : Review of Particle Physics, 2020-2021 , 2020 .
[162] F. Šimkovic,et al. Beta Decay and the Cosmic Neutrino Background , 2014 .
[163] Ashley J. Ross,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples , 2014 .
[164] R. Dicke. Coherence in Spontaneous Radiation Processes , 1954 .