Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters at electron energies from approximately zero up to 2 eV. At energies close to zero the attachment cross section for the reaction varies inversely with the electron energy, indicative of s-wave electron capture to . Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition, electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions, and , from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are undissociated clusters ions including the monomer while oxygen ions appear with comparatively low intensity.

[1]  T. Märk,et al.  Dissociative electron attachment cross section to CHCl3 using a high resolution crossed beams technique , 1997 .

[2]  T. Märk,et al.  A coordinated flowing afterglow and crossed beam study of electron attachment to CCl3Br , 1997 .

[3]  T. Märk,et al.  Dissociative electron attachment to using a high-resolution crossed-beams technique , 1996 .

[4]  Stampfli,et al.  Vibrationally Resolved Electron Attachment to Oxygen Clusters. , 1996, Physical review letters.

[5]  T. Märk,et al.  LOW-ENERGY ELECTRON ATTACHMENT TO MIXED OZONE/OXYGEN CLUSTERS , 1996 .

[6]  T. Märk,et al.  DISSOCIATIVE ELECTRON ATTACHMENT TO OZONE USING A HIGH-RESOLUTION CROSSED BEAMS TECHNIQUE , 1996 .

[7]  T. Märk,et al.  A crossed beam high resolution study of dissociative electron attachment to CCl4 , 1995 .

[8]  N. Mason,et al.  Electron-impact ionization of ozone , 1995 .

[9]  K. Hirao,et al.  Study of low‐lying electronic states of ozone by multireference Mo/ller–Plesset perturbation method , 1995 .

[10]  E. Illenberger,et al.  Electron attachment reactions in mixed SF6/N2 clusters , 1995 .

[11]  T. Märk,et al.  Dissociative electron attachment to SF6: production of SF5− at temperatures below 300 K , 1995 .

[12]  P. Crutzen,et al.  A Reevaluation of the Ozone Budget with HALOE UARS Data: No Evidence for the Ozone Deficit , 1995, Science.

[13]  W. Randel,et al.  TOMS total ozone trends in potential vorticity coordinates , 1995 .

[14]  A. Hofzumahaus,et al.  O3 ? O(D) photolysis frequencies determined from spectroradiometric measurements of solar actinic U , 1995 .

[15]  J. Loiseau,et al.  Numerical simulation of ozone axial and radial distribution in a cylindrical oxygen-fed ozonizer , 1994 .

[16]  Brusa,et al.  Absolute total-cross-section measurements for intermediate-energy electron scattering on CF4, CClF3, CCl2F2, CCl3F, and CCl4. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  T. Märk,et al.  Production and properties of CO2 cluster anions , 1992 .

[18]  L. Christophorou,et al.  Dissociative electron attachment to singlet oxygen , 1992 .

[19]  L. Christophorou,et al.  Mechanisms of anion formation in O2, O2/Ar and O2/Ne clusters; the role of inelastic electron scattering , 1992 .

[20]  H. Hotop,et al.  Attachment of electrons to molecules at submillielectronvolt resolution , 1992 .

[21]  T. Märk,et al.  The observation of unusual resonance channels in the electron attachment to mixed argon-oxygen clusters , 1992 .

[22]  T. Märk,et al.  Discrimination effects for ions with high initial kinetic energy in a Nier-type ion source and partial and total electron ionization cross-sections of CF4 , 1992 .

[23]  E. Illenberger,et al.  Violation of the σ− selection rule in electron attachment to O2 clusters , 1991 .

[24]  T. Märk,et al.  Production and stability of oxygen cluster cations and anions, revisited , 1991 .

[25]  E. Illenberger,et al.  Gas phase negative ion chemistry , 1989 .

[26]  K. Hiraoka A determination of the stabilities of O+2(O2)n and O−2(O2)n with n=1–8 from measurements of the gas‐phase ion equilibria , 1988 .

[27]  T. Märk,et al.  Formation of SO−2, SO2·O− and SO2·SO− by electron attachment to van der waals SO2 clusters , 1987 .

[28]  Leiter,et al.  Low-energy-electron attachment to oxygen clusters produced by nozzle expansion. , 1985, Physical review letters.

[29]  S. Brown Electron-molecule scattering , 1979 .

[30]  J. Craggs,et al.  Negative ions in Trichel corona in air , 1977 .

[31]  G. E. Caledonia,et al.  Survey of the gas-phase negative ion kinetics of inorganic molecules. Electron attachment reactions , 1975 .

[32]  W. Raith,et al.  Fine Structure ofO2+Measured by Electron Time-of-Flight Spectroscopy , 1973 .

[33]  R. Celotta,et al.  Molecular Photodetachment Spectrometry. II. The Electron Affinity of O2 and the Structure of O2 , 1972 .

[34]  L. Christophorou,et al.  Low energy (≲1 eV) electron attachment to molecules at very high gas densities: O2 , 1972 .

[35]  J. Moruzzi,et al.  Low Energy Electron Attachment to Ozone using Swarm Techniques , 1972 .

[36]  G. Schulz,et al.  Three-Body Attachment in O 2 Using Electron Beams , 1972 .

[37]  G. Schulz,et al.  Characteristics of the Trochoidal Electron Monochromator , 1970 .

[38]  G. Schulz,et al.  STRUCTURE OF O . , 1970 .

[39]  A. Phelps Laboratory studies of electron attachment and detachment processes of aeronomic interest , 1969 .

[40]  M. M. Shahin Nature of charge carriers in negative coronas. , 1969, Applied optics.

[41]  F. Fehsenfeld,et al.  Further laboratory measurements of negative reactions of atmospheric interest , 1968 .

[42]  F. Fehsenfeld,et al.  Laboratory measurements of negative ion reactions of atmospheric interest , 1967 .

[43]  R. Curran Negative Ion Formation in Ozone , 1961 .

[44]  N. Mott,et al.  The theory of atomic collisions , 1985 .