Microstructure and fracture toughness of in-situ nanocomposite coating by thermal spraying of Ti3AlC2/Cu powder

[1]  Qingwei Li,et al.  Fracture behaviour of ceramic–metallic glass gradient transition coating , 2019, Ceramics International.

[2]  Xuan He,et al.  Plastic metallic-barrier layer for crack propagation within plasma-sprayed Cu/ceramic coatings , 2019, Surface and Coatings Technology.

[3]  P. Song,et al.  Enhanced interface adhesion by in-situ oxidation within metal-ceramic coatings , 2018, Ceramics International.

[4]  Chang-jiu Li,et al.  Prolong the durability of La2Zr2O7/YSZ TBCs by decreasing the cracking driving force in ceramic coatings , 2018, Journal of the European Ceramic Society.

[5]  Xuan He,et al.  Evolution of cracks within an Al2O3–40 wt%TiO2/NiCoCrAl gradient coating , 2018, Ceramics International.

[6]  J. Aktaa,et al.  Determination of interface toughness of functionally graded tungsten/EUROFER multilayer at 550 °C by analytical and experimental methods , 2018, Engineering Fracture Mechanics.

[7]  G. Hilmas,et al.  Escape from the strength-to-toughness paradox: Bulk ceramics through dual composite architectures , 2018, Journal of the European Ceramic Society.

[8]  Xuan He,et al.  Heat-induced interface-coupling behaviour of thermally sprayed Cu/ceramic coatings , 2018, Ceramics International.

[9]  Litian Hu,et al.  Surface Engineering Design of Alumina/Molybdenum Fibrous Monolithic Ceramic to Achieve Excellent Lubrication in a High Vacuum Environment , 2018, Tribology Letters.

[10]  Jie Zhang,et al.  Substitution behavior of Si atoms in the Ti 2 AlC ceramics , 2018 .

[11]  Limin He,et al.  Calcium-magnesium-alumino-silicate induced degradation and failure of La 2 (Zr 0.7 Ce 0.3 ) 2 O 7 /YSZ double-ceramic–layer thermal barrier coatings prepared by electron beam-physical vapor deposition , 2017 .

[12]  P. Xiao,et al.  A prominent driving force for the spallation of thermal barrier coatings: Chemistry dependent phase transformation of the bond coat , 2017 .

[13]  R. Vaßen,et al.  Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties , 2017, Journal of Thermal Spray Technology.

[14]  P. Song,et al.  Effects of the metal-ceramic transition region on the mechanical properties and crack propagation behavior of an Al2O3-40 wt% TiO2 coating , 2017 .

[15]  Y. Otsuka,et al.  Effects of micro-grooves on tribological behaviour of plasma-sprayed alumina-13%titania coatings , 2017 .

[16]  P. Greil,et al.  Sintering and properties of mechanical alloyed Ti3AlC2-Cu composites , 2017 .

[17]  Jisheng Pan,et al.  Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000 °C , 2017 .

[18]  Limin He,et al.  Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures , 2015 .

[19]  Dian-ran Yan,et al.  Influence of composite powders’ microstructure on the microstructure and properties of Al2O3–TiO2 coatings fabricated by plasma spraying , 2015 .

[20]  J. Bonneville,et al.  Microstructural characterization and compression properties of TiC0.61/Cu(Al) composite synthesized from Cu and Ti3AlC2 powders , 2014 .

[21]  Adam J. Stevenson,et al.  Strong, tough and stiff bioinspired ceramics from brittle constituents. , 2014, Nature materials.

[22]  T. Clyne,et al.  A methodology, based on sintering-induced stiffening, for prediction of the spallation lifetime of plasma-sprayed coatings , 2013 .

[23]  William E Lee,et al.  TEM study of the early stages of Ti2AlC oxidation at 900 °C , 2012 .

[24]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[25]  J. Hosson,et al.  TEM study of the initial oxide scales of Ti2AlC , 2011 .

[26]  William E Lee,et al.  Microstructural evolution during high-temperature oxidation of Ti2AlC ceramics , 2010 .

[27]  A. Watcharapasorn,et al.  Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: A role of nano-sized TiO2 addition , 2010 .

[28]  W. M. Rainforth,et al.  Indentation properties of plasma sprayed Al2O3–13% TiO2 nanocoatings , 2009 .

[29]  T. Clyne,et al.  A sintering model for plasma-sprayed zirconia thermal barrier coatings. Part II: Coatings bonded to a rigid substrate , 2009 .

[30]  Sunghak Lee,et al.  Effects of critical plasma spray parameter and spray distance on wear resistance of Al2O3–8 wt.%TiO2 coatings plasma-sprayed with nanopowders , 2008 .

[31]  R. T. Wu,et al.  On the compatibility of single crystal superalloys with a thermal barrier coating system , 2008 .

[32]  Y. Zhou,et al.  Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu-Ti3AlC2 composites , 2007 .

[33]  Yanchun Zhou,et al.  Thermal stability of Ti3AlC2/Al2O3 composites in high vacuum , 2007 .

[34]  L. Cabedo,et al.  Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior , 2006 .

[35]  Y. Zhou,et al.  Interfacial microstructure of Ti3AlC2 and Al2O3 oxide scale , 2006 .

[36]  S. Wright,et al.  EBSD Image Quality Mapping , 2005, Microscopy and Microanalysis.

[37]  John W. Halloran,et al.  Fibrous Monolithic Ceramics , 2005, Journal of the American Ceramic Society.

[38]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[39]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .