Planar Shape Manipulation using Approximate Geometric Primitives

We present robust algorithms for set operations and affine transformations on curved shapes in the plane using approximate geometric primitives. We use a refinement algorithm to ensure consistency. Its computational complexity is O(n log n + k) for an input of size n with k = O(n2) consistency violations. The output is as accurate as the geometric primitives. We validate our algorithms using sequences of six set operations and affine transforms on shapes bounded by algebraic curve segments of degree 1 to 6. We test generic and degenerate inputs.

[1]  Dan Halperin,et al.  Controlled perturbation for arrangements of circles , 2003, SCG '03.

[2]  Sigal Raab,et al.  Controlled perturbation for arrangements of polyhedral surfaces with application to swept volumes , 1999, SCG '99.

[3]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[4]  Dan Halperin,et al.  A perturbation scheme for spherical arrangements with application to molecular modeling , 1997, SCG '97.

[5]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[6]  Victor J. Milenkovic,et al.  Robust Complete Path Planning in the Plane , 2012, WAFR.

[7]  Dan Halperin,et al.  Controlled Perturbation for Arrangements of Polyhedral Surfaces , 2002 .

[8]  Steven Fortune,et al.  Polyhedral modelling with multiprecision integer arithmetic , 1997, Comput. Aided Des..

[9]  Michael Kerber,et al.  ROBUST GEOMETRIC COMPUTATION , 2012 .

[10]  Victor J. Milenkovic,et al.  An Approximate Arrangement Algorithm for Semi-Algebraic Curves , 2007, Int. J. Comput. Geom. Appl..

[11]  Kurt Mehlhorn,et al.  Algorithms for Complex Shapes with Certified Numerics and Topology Controlled Perturbation for Delaunay Triangulations , 2022 .

[12]  J. Milenkovi Shortest Path Geometric Rounding , 2000 .

[13]  Lutz Kettner,et al.  Snap rounding of Bézier curves , 2007, SCG '07.

[14]  John Hershberger Stable snap rounding , 2013, Comput. Geom..

[15]  Eli Packer,et al.  Iterated snap rounding , 2002, Comput. Geom..

[16]  Victor J. Milenkovic,et al.  Two Approximate Minkowski Sum Algorithms , 2010, Int. J. Comput. Geom. Appl..

[17]  Victor J. Milenkovic,et al.  Controlled linear perturbation , 2011, Comput. Aided Des..