Bifurcation analysis and chaos control in Shimizu-Morioka chaotic system with delayed feedback

We investigate the local Hopf bifurcation in Shimizu-Morioka chaotic system with delayed feedback control. We choose the delay as the parameter, and the existence of local Hopf bifurcations are verified. By using the normal form theory and the center manifold theorem, we obtain the explicit formulae for determining the stability and direction of bifurcated periodic solutions. Numerical simulations indicate that delayed feedback control plays an effective role in control of chaos.

[1]  Maoan Han,et al.  The existence of homoclinic orbits to saddle-focus , 2005, Appl. Math. Comput..

[2]  Hiroshi Kokubu,et al.  Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I , 2004 .

[3]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[4]  Qigui Yang,et al.  A new method to find homoclinic and heteroclinic orbits , 2011, Appl. Math. Comput..

[5]  Guanrong Chen,et al.  Hopf bifurcation Control Using Nonlinear Feedback with Polynomial Functions , 2004, Int. J. Bifurc. Chaos.

[6]  Kestutis Pyragas,et al.  Experimental control of chaos by delayed self-controlling feedback , 1993 .

[7]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[8]  M. T. Yassen,et al.  Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems , 2012, Appl. Math. Comput..

[9]  Qigui Yang,et al.  Chaotic attractors of the Conjugate Lorenz-Type System , 2007, Int. J. Bifurc. Chaos.

[10]  Weihua Jiang,et al.  Hopf-transcritical bifurcation in retarded functional differential equations , 2010 .

[11]  S. Ruan,et al.  On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. , 2001, IMA journal of mathematics applied in medicine and biology.

[12]  T. Shimizu,et al.  On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model , 1980 .

[13]  Vasiliy Ye. Belozyorov,et al.  On existence of homoclinic orbits for some types of autonomous quadratic systems of differential equations , 2011, Appl. Math. Comput..

[14]  Guanrong Chen,et al.  Complex Dynamical Behaviors of the Chaotic Chen's System , 2003, Int. J. Bifurc. Chaos.

[15]  Qigui Yang,et al.  A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.

[16]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[17]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[18]  Junjie Wei,et al.  Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaos , 2004 .

[19]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[20]  Maoan Han,et al.  Limit cycle bifurcations of some Liénard systems with a cuspidal loop and a homoclinic loop , 2011 .

[21]  Luis Fernando Mello,et al.  Degenerate Hopf bifurcations in the Lü system , 2009 .

[22]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[23]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[24]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[26]  J. Ian Richards,et al.  Theory of Distributions: A general definition of multiplication and convolution for distributions , 1990 .

[27]  Marcelo Messias,et al.  Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .

[28]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[29]  Jianhua Sun,et al.  Si’lnikov homoclinic orbits in a new chaotic system , 2007 .

[30]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[31]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[32]  Xia Wang,et al.  Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system , 2009 .

[33]  L. Magalhães,et al.  Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens Singularity , 1995 .

[34]  Guanrong Chen,et al.  A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.

[35]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[36]  Weihua Jiang,et al.  Bogdanov–Takens singularity in Van der Pol’s oscillator with delayed feedback , 2007 .

[37]  S. Ruan,et al.  Global dynamics and bifurcations in a four-dimensional replicator system , 2012 .

[38]  Gheorghe Tigan,et al.  Heteroclinic orbits in the T and the Lü systems , 2009 .

[39]  Wuneng Zhou,et al.  On dynamics analysis of a new chaotic attractor , 2008 .

[40]  J. Hale Theory of Functional Differential Equations , 1977 .