Modeling and Experimental Validation of Electrochemical Reduction of CO2 to CO in a Microfluidic Cell

A steady-state isothermal model is presented for the electrochemical reduction of CO2 to CO in a microfluidic flow cell. The full cell model integrates the transport of charge, mass, and momentum with electrochemistry for both the cathode and anode. Polarization curves obtained from experiments conducted at different flow rates with varying applied cell potentials are used to determine the kinetic parameters in the electrochemical reaction rate equations. The parameterized model is validated using a different set of experimental results. Good agreement is observed, especially at high cell potentials (–2.5 to –3 V). The model is further used to analyze the effects of several operating parameters, such as applied cell potential, CO2 concentration of the feed and feed flow rates. The use of the model to analyze the effect of design parameters, such as channel length and porosity of the gas diffusion electrodes, is also demonstrated. © 2014 The Electrochemical Society. [DOI: 10.1149/2.1021414jes] All rights reserved.

[1]  J. Yano,et al.  Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes , 2007 .

[2]  Klaus S. Lackner,et al.  CARBONATE CHEMISTRY FOR SEQUESTERING FOSSIL CARBON , 2003 .

[3]  K. Ohta,et al.  Electrochemical conversion of carbon dioxide to formic acid on Pb in KOH/methanol electrolyte at ambient temperature and pressure , 1998 .

[4]  E. U. Ubong,et al.  Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell , 2009 .

[5]  John T. S. Irvine,et al.  Efficient Reduction of CO2 in a Solid Oxide Electrolyzer , 2008 .

[6]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[7]  Meng Ni,et al.  An electrochemical model for syngas production by co-electrolysis of H2O and CO2 , 2012 .

[8]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[9]  Akira Fujishima,et al.  Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell , 2002 .

[10]  D. Leung,et al.  Modeling of a microfluidic electrochemical cell for CO2 utilization and fuel production , 2013 .

[11]  Meng Ni,et al.  2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis , 2012 .

[12]  侯恩哲,et al.  ' s personal copy Virtual models of indoor-air-quality sensors , 2010 .

[13]  Yue Xing,et al.  Electrochemical conversion of carbon dioxide to methane in aqueous NaHCO3 solution at less than 273 K , 2002 .

[14]  Sichao Ma,et al.  Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. , 2012, Journal of the American Chemical Society.

[15]  H. Yano,et al.  Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides , 2004 .

[16]  G. Schatz The journal of physical chemistry letters , 2009 .

[17]  Darren M. Stevenson,et al.  Combining Structural and Electrochemical Analysis of Electrodes Using Micro-Computed Tomography and a Microfluidic Fuel Cell , 2012 .

[18]  Zhimin Xue,et al.  Electrochemistry , 2019, Encyclopedia of Continuum Mechanics.

[19]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[20]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[21]  D. Ingham,et al.  APPLICATION OF FLUID FLOWS THROUGH POROUS MEDIA IN FUEL CELLS , 2005 .

[22]  Lianwei Wang,et al.  Journal of Electroanalytical Chemistry , 1960, Nature.

[23]  Ibram Ganesh,et al.  Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review) , 2014 .

[24]  Michael Vynnycky,et al.  Analysis of a Two-Phase Non-Isothermal Model for a PEFC , 2005 .

[25]  Hui Li,et al.  Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 2: Scale-up , 2007 .

[26]  Paul J. A. Kenis,et al.  Effect of Cations on the Electrochemical Conversion of CO2 to CO , 2013 .

[27]  Paul J. A. Kenis,et al.  Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[28]  Chao-Yang Wang,et al.  Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells , 2000 .

[29]  K. Ogura,et al.  Electrochemical reduction of carbon dioxide to ethylene: Mechanistic approach , 2013 .

[30]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[31]  Hubert A. Gasteiger,et al.  Handbook of Fuel Cells , 2010 .

[32]  Falong Jia,et al.  Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst , 2014 .

[33]  Yixiang Shi,et al.  Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide , 2014 .

[34]  Bernard Delmon,et al.  Studies in Surface Science and Catalysis , 1988 .

[35]  Erik Kjeang,et al.  Computational modeling of microfluidic fuel cells with flow-through porous electrodes , 2011 .

[36]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[37]  J. Litynski,et al.  Progress and New Developments in Carbon Capture and Storage , 2009 .

[38]  J. Giddings,et al.  NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS , 1966 .

[39]  Xingjian Xue,et al.  Modeling of Solid Oxide Electrolysis Cell for Syngas Generation with Detailed Surface Chemistry , 2012 .

[40]  D. Lowy,et al.  Electrochemical reduction of carbon dioxide on flat metallic cathodes , 1997 .

[41]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[42]  S. Jensen,et al.  Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells , 2010 .

[43]  C. Delacourt,et al.  Mathematical Modeling of CO2 Reduction to CO in Aqueous Electrolytes I. Kinetic Study on Planar Silver and Gold Electrodes , 2010 .

[44]  Rafael Reif,et al.  Electrochemical and Solid-Sates Letters , 1999 .

[45]  Dennis Anderson,et al.  Annual review of energy and the environment , 1991 .

[46]  Mattias Björkman,et al.  Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions , 2000 .

[47]  K. Ohta,et al.  Electrochemical reduction of carbon dioxide to ethylene at a copper electrode in methanol using potassium hydroxide and rubidium hydroxide supporting electrolytes , 2006 .

[48]  Yihong Chen,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[49]  Ned Djilali,et al.  Computational modeling of air-breathing microfluidic fuel cells with flow-over and flow-through anodes , 2014 .

[50]  Burkhard Raguse,et al.  Energy storage by the electrochemical reduction of CO2 to CO at a porous Au film , 2002 .

[51]  ScienceDirect Current opinion in chemical engineering , 2011 .

[52]  Ronald L. Cook,et al.  High Rate Gas Phase CO 2 Reduction to Ethylene and Methane Using Gas Diffusion Electrodes , 1990 .

[53]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[54]  R. Huggins Solid State Ionics , 1989 .

[55]  Robert E. Wilson,et al.  Fundamentals of momentum, heat, and mass transfer , 1969 .

[56]  D. J. Moodley,et al.  Fischer-Tropsch synthesis : catalysts and chemistry , 2013 .

[57]  E. L. Cussler Chapter 3 – MULTICOMPONENT FLUX EQUATIONS , 1976 .

[58]  Wojciech M. Budzianowski,et al.  Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors , 2012 .

[59]  Masami Shibata,et al.  High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes , 1997 .

[60]  Mina Hoorfar,et al.  Numerical study of the effect of the channel and electrode geometry on the performance of microfluidic fuel cells , 2010 .

[61]  Tohru S. Suzuki,et al.  Electrochemical Reduction of CO2 to Methane at the Cu Electrode in Methanol with Sodium Supporting Salts and Its Comparison with Other Alkaline Salts , 2006 .

[62]  Y. Zenitani,et al.  Electrochemical Reduction of Carbon Dioxide Using a Copper Rubeanate Metal Organic Framework , 2012 .

[63]  Masahiro Hiramoto,et al.  Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low‐Temperature Aqueous KHCO 3 Media , 1990 .

[64]  M. M. Tomadakis,et al.  Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results , 2005 .

[65]  M. N. Mahmood,et al.  Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes , 1987 .

[66]  Taylor Francis Online Critical reviews in plant sciences , 1983 .

[67]  K. W. Frese,et al.  The electrochemical reduction of aqueous carbon dioxide to methanol at molybdenum electrodes with low overpotentials , 1986 .

[68]  K. Ohta,et al.  Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol , 1999 .

[69]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[70]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[71]  John Newman,et al.  Design of an Electrochemical Cell Making Syngas ( CO + H2 ) from CO2 and H2O Reduction at Room Temperature , 2007 .

[72]  Andre Peter Steynberg,et al.  Introduction to Fischer-Tropsch Technology , 2004 .

[73]  Y. D. Kim,et al.  Electrochemical conversion of carbon dioxide in a solid oxide electrolysis cell , 2014 .

[74]  S. Dutta,et al.  Comprehensive Inorganic Chemistry II (Second Edition) , 2013 .