Three new VHS–DES quasars at 6.7 < z < 6.9 and emission line properties at z > 6.5
暂无分享,去创建一个
J. Frieman | O. Lahav | F. Castander | J. García-Bellido | P. Hewett | A. Rosell | K. Honscheid | M. Maia | R. McMahon | R. Ogando | F. Sobreira | M. Swanson | M. Banerji | D. Tucker | M. Kind | J. Annis | S. Allam | H. Diehl | J. Gschwend | I. Sevilla-Noarbe | T. Abbott | S. Ávila | E. Bertin | D. Brooks | E. Buckley-Geer | J. Carretero | C. Cunha | C. D'Andrea | S. Desai | P. Doel | A. Evrard | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. Hollowood | B. Hoyle | D. James | K. Kuehn | M. Lima | R. Miquel | A. Plazas | V. Scarpine | M. Schubnell | S. Serrano | M. Smith | E. Suchyta | G. Tarlé | E. Sánchez | P. Martini | S. Reed | D. Thomas | V. Vikram | Rory J. E. Smith | J. Vicente | R. McMahon | M. Lima | A. Carnero Rosell | M. Carrasco Kind | L. D. da Costa | J. De Vicente | M. Rauch | G. Becker | E. Pons | A. Roodman | L. Costa | J. Marshall | R. Smith | D. Thomas | M. Swanson | D. James | George D. Becker | Estelle Pons | Michael Rauch
[1] R. G. McMahon,et al. A new bright z = 6.82 quasar discovered with VISTA: VHS J0411–0907 , 2018, Monthly Notices of the Royal Astronomical Society.
[2] L. Ho,et al. Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7 , 2018, The Astrophysical Journal.
[3] M. Sullivan,et al. The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.
[4] H. Rix,et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.
[5] Philip J. Tait,et al. Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0 , 2019, The Astrophysical Journal.
[6] H. Rix,et al. Physical Properties of 15 Quasars at z ≳ 6.5 , 2017, 1710.01251.
[7] D. Lang,et al. Deep Full-sky Coadds from Three Years of WISE and NEOWISE Observations , 2017, 1705.06746.
[8] Adam D. Myers,et al. First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey , 2017, 1703.07490.
[9] J. Prochaska,et al. Implications of z ∼ 6 Quasar Proximity Zones for the Epoch of Reionization and Quasar Lifetimes , 2017, 1703.02539.
[10] Sergey E. Koposov,et al. Eight new luminous z >= 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations , 2017, 1701.04852.
[11] G. Richards,et al. Correcting C iv-Based Virial Black Hole Masses , 2016, 1610.08977.
[12] Xiaohui Fan,et al. THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.
[13] H. Rix,et al. THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.
[14] M. Viel,et al. XQ-100: A legacy survey of one hundred 3.5 ≲ z ≲ 4.5 quasars observed with VLT/X-shooter , 2016, 1607.08776.
[15] G. Richards,et al. C iv emission-line properties and systematic trends in quasar black hole mass estimates , 2016, 1606.02726.
[16] Bradley M. Peterson,et al. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES , 2016, 1602.03894.
[17] R. McMahon,et al. BRIGHT [C ii] AND DUST EMISSION IN THREE z > 6.6 QUASAR HOST GALAXIES OBSERVED BY ALMA , 2015, 1511.07432.
[18] R. McMahon,et al. First discoveries of z ̃ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey , 2015, 1507.00726.
[19] H. Rix,et al. THE IDENTIFICATION OF z-DROPOUTS IN PAN-STARRS1: THREE QUASARS AT 6.5< z< 6.7 , 2015, 1502.01927.
[20] Sergey E. Koposov,et al. Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey , 2014, 1407.3801.
[21] P. Hewett,et al. BLACK HOLE MASS ESTIMATES AND EMISSION-LINE PROPERTIES OF A SAMPLE OF REDSHIFT z > 6.5 QUASARS , 2013, 1311.3260.
[22] Queen Mary,et al. DISCOVERY OF THREE z > 6.5 QUASARS IN THE VISTA KILO-DEGREE INFRARED GALAXY (VIKING) SURVEY , 2013, 1311.3666.
[23] Stefan Kimeswenger,et al. An advanced scattered moonlight model for Cerro Paranal , 2013, 1310.7030.
[24] S. Warren,et al. Photometric brown-dwarf classification , 2013, 1310.6613.
[25] W. Schmidt,et al. Black hole formation in the early Universe , 2013, 1304.0962.
[26] Celine Peroux,et al. The large area KX quasar catalogue – I. Analysis of the photometric redshift selection and the complete quasar catalogue , 2012, 1206.1434.
[27] W. Kausch,et al. An atmospheric radiation model for Cerro Paranal - I. The optical spectral range , 2012, 1205.2003.
[28] Caltech,et al. IRON AND α-ELEMENT PRODUCTION IN THE FIRST ONE BILLION YEARS AFTER THE BIG BANG ,, , 2011, 1111.4843.
[29] Dominic J. Benford,et al. THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) , 2011, 1108.4677.
[30] Richard G. McMahon,et al. A luminous quasar at a redshift of z = 7.085 , 2011, Nature.
[31] H. Rix,et al. EVIDENCE FOR NON-EVOLVING Fe ii/Mg ii RATIOS IN RAPIDLY ACCRETING z ∼ 6 QSOs , 2011, 1106.5501.
[32] G. Richards,et al. A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.
[33] G. Richards,et al. UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C iv EMISSION , 2010, 1011.2282.
[34] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[35] Marta Volonteri,et al. Formation of supermassive black holes , 2010, 1003.4404.
[36] R. McLure,et al. THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.
[37] Cambridge,et al. Growing the first bright quasars in cosmological simulations of structure formation , 2009, 0905.1689.
[38] T. O. S. University,et al. MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.
[39] J. Bolton,et al. The nature and evolution of the highly ionized near-zones in the absorption spectra of z≃ 6 quasars , 2006, astro-ph/0607331.
[40] Xiaohui Fan,et al. Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.
[41] P. Hewett,et al. Simulating wide-field quasar surveys from the optical to near-infrared , 2005, astro-ph/0512325.
[42] A. Laor,et al. What controls the C iv line profile in active galactic nuclei , 2004, astro-ph/0409196.
[43] D. Kelson. Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.
[44] M. SubbaRao,et al. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.
[45] P. Dokkum,et al. Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.
[46] B. Wilkes,et al. An Empirical Ultraviolet Template for Iron Emission in Quasars as Derived from I Zwicky 1 , 2001, astro-ph/0104320.
[47] J. Chiang,et al. Accretion Disk Winds from Active Galactic Nuclei , 1995 .
[48] A. Königl,et al. DISK-DRIVEN HYDROMAGNETIC WINDS AS A KEY INGREDIENT OF ACTIVE GALACTIC NUCLEI UNIFICATION SCHEMES , 1994 .
[49] K. Horne,et al. AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .