Three new VHS–DES quasars at 6.7 < z < 6.9 and emission line properties at z > 6.5

We report the results from a search for z > 6.5 quasars using the Dark Energy Survey (DES) Year 3 dataset combined with the VISTA Hemisphere Survey (VHS) and WISE AllSky Survey. Our photometric selection method is shown to be highly efficient in identifying clean samples of high-redshift quasars leading to spectroscopic confirmation of three new quasars VDESJ 0244−5008 (z = 6.724), VDESJ 0020−3653 (z = 6.834) and VDESJ 0246−5219 (z = 6.90) which were selected as the highest priority candidates in the survey data without any need for additional follow-up observations. The new quasars span the full range in luminosity covered by other z > 6.5 quasar samples (JAB = 20.2 to 21.3; M1450 = −25.6 to −26.6). We have obtained spectroscopic observations in the near infrared for VDESJ 0244−5008 and VDESJ 0020−3653 as well as our previously identified quasar, VDESJ 0224−4711 at z = 6.50 from Reed et al. (2017). We use the near infrared spectra to derive virial black-hole masses from the full-width-half-maximum of the MgII line. These black-hole masses are ' 1 2 × 10M . Combining with the bolometric luminosities of these quasars of Lbol ' 1 3 × 10implies that the Eddington ratios are high '0.6-1.1. We consider the CIV emission line properties of the sample and demonstrate that our highredshift quasars do not have unusual CIV line properties when compared to carefully matched low-redshift samples. Our new DES+VHS z > 6.5 quasars now add to the growing census of luminous, rapidly accreting supermassive black-holes seen well into the epoch of reionisation.

[1]  R. G. McMahon,et al.  A new bright z = 6.82 quasar discovered with VISTA: VHS J0411–0907 , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  L. Ho,et al.  Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7 , 2018, The Astrophysical Journal.

[3]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[4]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[5]  Philip J. Tait,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0 , 2019, The Astrophysical Journal.

[6]  H. Rix,et al.  Physical Properties of 15 Quasars at z ≳ 6.5 , 2017, 1710.01251.

[7]  D. Lang,et al.  Deep Full-sky Coadds from Three Years of WISE and NEOWISE Observations , 2017, 1705.06746.

[8]  Adam D. Myers,et al.  First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey , 2017, 1703.07490.

[9]  J. Prochaska,et al.  Implications of z ∼ 6 Quasar Proximity Zones for the Epoch of Reionization and Quasar Lifetimes , 2017, 1703.02539.

[10]  Sergey E. Koposov,et al.  Eight new luminous z >= 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations , 2017, 1701.04852.

[11]  G. Richards,et al.  Correcting C iv-Based Virial Black Hole Masses , 2016, 1610.08977.

[12]  Xiaohui Fan,et al.  THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.

[13]  H. Rix,et al.  THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.

[14]  M. Viel,et al.  XQ-100: A legacy survey of one hundred 3.5 ≲ z ≲ 4.5 quasars observed with VLT/X-shooter , 2016, 1607.08776.

[15]  G. Richards,et al.  C iv emission-line properties and systematic trends in quasar black hole mass estimates , 2016, 1606.02726.

[16]  Bradley M. Peterson,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES , 2016, 1602.03894.

[17]  R. McMahon,et al.  BRIGHT [C ii] AND DUST EMISSION IN THREE z > 6.6 QUASAR HOST GALAXIES OBSERVED BY ALMA , 2015, 1511.07432.

[18]  R. McMahon,et al.  First discoveries of z ̃ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey , 2015, 1507.00726.

[19]  H. Rix,et al.  THE IDENTIFICATION OF z-DROPOUTS IN PAN-STARRS1: THREE QUASARS AT 6.5< z< 6.7 , 2015, 1502.01927.

[20]  Sergey E. Koposov,et al.  Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey , 2014, 1407.3801.

[21]  P. Hewett,et al.  BLACK HOLE MASS ESTIMATES AND EMISSION-LINE PROPERTIES OF A SAMPLE OF REDSHIFT z > 6.5 QUASARS , 2013, 1311.3260.

[22]  Queen Mary,et al.  DISCOVERY OF THREE z > 6.5 QUASARS IN THE VISTA KILO-DEGREE INFRARED GALAXY (VIKING) SURVEY , 2013, 1311.3666.

[23]  Stefan Kimeswenger,et al.  An advanced scattered moonlight model for Cerro Paranal , 2013, 1310.7030.

[24]  S. Warren,et al.  Photometric brown-dwarf classification , 2013, 1310.6613.

[25]  W. Schmidt,et al.  Black hole formation in the early Universe , 2013, 1304.0962.

[26]  Celine Peroux,et al.  The large area KX quasar catalogue – I. Analysis of the photometric redshift selection and the complete quasar catalogue , 2012, 1206.1434.

[27]  W. Kausch,et al.  An atmospheric radiation model for Cerro Paranal - I. The optical spectral range , 2012, 1205.2003.

[28]  Caltech,et al.  IRON AND α-ELEMENT PRODUCTION IN THE FIRST ONE BILLION YEARS AFTER THE BIG BANG ,, , 2011, 1111.4843.

[29]  Dominic J. Benford,et al.  THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) , 2011, 1108.4677.

[30]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[31]  H. Rix,et al.  EVIDENCE FOR NON-EVOLVING Fe ii/Mg ii RATIOS IN RAPIDLY ACCRETING z ∼ 6 QSOs , 2011, 1106.5501.

[32]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.

[33]  G. Richards,et al.  UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C iv EMISSION , 2010, 1011.2282.

[34]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[35]  Marta Volonteri,et al.  Formation of supermassive black holes , 2010, 1003.4404.

[36]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[37]  Cambridge,et al.  Growing the first bright quasars in cosmological simulations of structure formation , 2009, 0905.1689.

[38]  T. O. S. University,et al.  MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.

[39]  J. Bolton,et al.  The nature and evolution of the highly ionized near-zones in the absorption spectra of z≃ 6 quasars , 2006, astro-ph/0607331.

[40]  Xiaohui Fan,et al.  Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.

[41]  P. Hewett,et al.  Simulating wide-field quasar surveys from the optical to near-infrared , 2005, astro-ph/0512325.

[42]  A. Laor,et al.  What controls the C iv line profile in active galactic nuclei , 2004, astro-ph/0409196.

[43]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[44]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[45]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[46]  B. Wilkes,et al.  An Empirical Ultraviolet Template for Iron Emission in Quasars as Derived from I Zwicky 1 , 2001, astro-ph/0104320.

[47]  J. Chiang,et al.  Accretion Disk Winds from Active Galactic Nuclei , 1995 .

[48]  A. Königl,et al.  DISK-DRIVEN HYDROMAGNETIC WINDS AS A KEY INGREDIENT OF ACTIVE GALACTIC NUCLEI UNIFICATION SCHEMES , 1994 .

[49]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .