A novel computational model of the human ventricular action potential and Ca transient.

[1]  J. Papp,et al.  Self‐augmentation of the lengthening of repolarization is related to the shape of the cardiac action potential: implications for reverse rate dependency , 2009, British journal of pharmacology.

[2]  Stanley Nattel,et al.  Abstract 1520: Molecular Basis of Repolarization Reserve Differences between Dogs and Man , 2008 .

[3]  Stefano Severi,et al.  Simulation of Ca-calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials. , 2007, Biophysical journal.

[4]  Y. Rudy,et al.  Erratum: Pharmacogenetics and anti-arrhythmic drug therapy: A theoretical investigation (American Journal of Physiology - Heart and Circulatory Physiology (January 2007) 292 ( H66-H75 )) , 2007 .

[5]  András Varró,et al.  Slow Delayed Rectifier Potassium Current (IKs) and the Repolarization Reserve , 2007, Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc.

[6]  K. T. ten Tusscher,et al.  Alternans and spiral breakup in a human ventricular tissue model. , 2006, American journal of physiology. Heart and circulatory physiology.

[7]  J. Papp,et al.  P6-2: Role of the slowly inactivating transient outward potassium current in cardiac repolarization , 2006 .

[8]  László Virág,et al.  Restricting Excessive Cardiac Action Potential and QT Prolongation: A Vital Role for IKs in Human Ventricular Muscle , 2005, Circulation.

[9]  Yoram Rudy,et al.  Subunit Interaction Determines IKs Participation in Cardiac Repolarization and Repolarization Reserve , 2005, Circulation.

[10]  R. Mathias,et al.  Transmural gradients in Na/K pump activity and [Na+]I in canine ventricle. , 2005, Biophysical journal.

[11]  Deborah DiSilvestre,et al.  Transmural Heterogeneity of Na+–Ca2+ Exchange: Evidence for Differential Expression in Normal and Failing Hearts , 2005, Circulation research.

[12]  Yoram Rudy,et al.  Rate Dependence and Regulation of Action Potential and Calcium Transient in a Canine Cardiac Ventricular Cell Model , 2004, Circulation.

[13]  Donald M Bers,et al.  A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. , 2004, Biophysical journal.

[14]  Stanley Nattel,et al.  Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. , 2004, Heart rhythm.

[15]  R. Winslow,et al.  A computational model of the human left-ventricular epicardial myocyte. , 2004, Biophysical journal.

[16]  G. Bett,et al.  Computer model of action potential of mouse ventricular myocytes. , 2004, American journal of physiology. Heart and circulatory physiology.

[17]  D. Noble,et al.  A model for human ventricular tissue. , 2004, American journal of physiology. Heart and circulatory physiology.

[18]  Donald M Bers,et al.  Dynamic Regulation of Sodium/Calcium Exchange Function in Human Heart Failure , 2003, Circulation.

[19]  Britton Chance,et al.  Diffuse optical tomography with a priori anatomical information , 2003, SPIE BiOS.

[20]  A. Zaza,et al.  Diverse Toxicity Associated with Cardiac Na+/K+ Pump Inhibition: Evaluation of Electrophysiological Mechanisms , 2003, Journal of Pharmacology and Experimental Therapeutics.

[21]  Donald M Bers,et al.  Cellular Basis of Abnormal Calcium Transients of Failing Human Ventricular Myocytes , 2003, Circulation research.

[22]  Kenneth R. Laurita,et al.  Transmural Heterogeneity of Calcium Handling in Canine , 2003, Circulation research.

[23]  Steven R Houser,et al.  Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes. , 2003, Cardiovascular research.

[24]  Lars S. Maier,et al.  Rate Dependence of [Na+]i and Contractility in Nonfailing and Failing Human Myocardium , 2002, Circulation.

[25]  R Wilders,et al.  A computationally efficient electrophysiological model of human ventricular cells. , 2002, American journal of physiology. Heart and circulatory physiology.

[26]  Donald M. Bers,et al.  Na+-Ca2+ Exchange Current and Submembrane [Ca2+] During the Cardiac Action Potential , 2002, Circulation research.

[27]  Antonio Zaza,et al.  Rate dependency of delayed rectifier currents during the guinea‐pig ventricular action potential , 2001, The Journal of physiology.

[28]  A Varró,et al.  The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes. , 2001, Cardiovascular research.

[29]  J. Magyar,et al.  Effects of endothelin-1 on calcium and potassium currents in undiseased human ventricular myocytes , 2000, Pflügers Archiv.

[30]  D. Escande,et al.  Differential expression of KvLQT1 isoforms across the human ventricular wall. , 2000, American journal of physiology. Heart and circulatory physiology.

[31]  Y Rudy,et al.  Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. , 2000, Biophysical journal.

[32]  László Virág,et al.  The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization , 2000, The Journal of physiology.

[33]  G. Hasenfuss,et al.  Heterogeneous transmural gene expression of calcium-handling proteins and natriuretic peptides in the failing human heart. , 1999, Cardiovascular research.

[34]  P. Bennett,et al.  Human Ether-à-go-go–related Gene K+ Channel Gating Probed with Extracellular Ca2+ , 1999, The Journal of general physiology.

[35]  A Varró,et al.  Delayed rectifier potassium current in undiseased human ventricular myocytes. , 1998, Cardiovascular research.

[36]  P. Helm,et al.  Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. , 1998, Journal of molecular and cellular cardiology.

[37]  G Lande,et al.  Amiodarone reduces transmural heterogeneity of repolarization in the human heart. , 1998, Journal of the American College of Cardiology.

[38]  M. Carrier,et al.  Transmural heterogeneity of action potentials and I to1 in myocytes isolated from the human right ventricle. , 1998, American journal of physiology. Heart and circulatory physiology.

[39]  D. Beuckelmann,et al.  Simulation study of cellular electric properties in heart failure. , 1998, Circulation research.

[40]  S Nattel,et al.  Effects of the chromanol 293B, a selective blocker of the slow, component of the delayed rectifier K+ current, on repolarization in human and guinea pig ventricular myocytes. , 1998, Cardiovascular research.

[41]  S Nattel,et al.  Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. , 1996, Circulation research.

[42]  HanjörgJust,et al.  Alterations in Intracellular Calcium Handling Associated With the Inverse Force-Frequency Relation in Human Dilated Cardiomyopathy , 1995 .

[43]  U. Ravens,et al.  Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. , 1994, Circulation research.

[44]  E. Rowland,et al.  Electrical restitution in the endocardium of the intact human right ventricle. , 1992, British heart journal.

[45]  M. Rosen,et al.  The Cellular Electrophysiologic Effects of Digitalis on Human Atrial Fibers , 1978, Circulation.

[46]  Antonio Zaza,et al.  Control of the cardiac action potential: The role of repolarization dynamics. , 2010, Journal of molecular and cellular cardiology.

[47]  Yoram Rudy,et al.  Pharmacogenetics and anti-arrhythmic drug therapy: a theoretical investigation. , 2007, American journal of physiology. Heart and circulatory physiology.

[48]  S Nattel,et al.  Transmembrane ICa contributes to rate-dependent changes of action potentials in human ventricular myocytes. , 1999, The American journal of physiology.

[49]  P. Bennett,et al.  Human Ether-à-go-go –related Gene K (cid:49) Channel Gating Probed with Extracellular Ca 2 (cid:49) Evidence for Two Distinct Voltage Sensors , 1999 .

[50]  C. January,et al.  Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. , 1998, Biophysical journal.

[51]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[52]  G. Steinbeck,et al.  Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. , 1996, Circulation.

[53]  M. Sanguinetti,et al.  Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. , 1993, Circulation research.