Oblique dual frames and shift-invariant spaces

[1]  Yonina C. Eldar,et al.  General Framework for Consistent Sampling in Hilbert Spaces , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[2]  Yonina C. Eldar Sampling Without Input Constraints: Consistent Reconstruction in Arbitrary Spaces , 2004 .

[3]  Yonina C. Eldar Sampling with Arbitrary Sampling and Reconstruction Spaces and Oblique Dual Frame Vectors , 2003 .

[4]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[5]  A. Aldroubi Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces , 2002 .

[6]  H. Ogawa,et al.  Pseudo-Duals of Frames with Applications , 2001 .

[7]  Shidong Li,et al.  A Theory of Generalized Multiresolution Structure and Pseudoframes of Translates , 2001 .

[8]  Shidong Li A Theory of Pseudoframes for Subspaces with Applications , 2001 .

[9]  O. Christensen,et al.  Perturbation of Frames for a Subspace of a Hilbert Space , 2000 .

[10]  O. Christensen,et al.  Density of Gabor Frames , 1999 .

[11]  Wai-Shing Tang,et al.  Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces , 1999 .

[12]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[13]  Shidong Li,et al.  On general frame decompositions , 1995 .

[14]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[15]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[16]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[17]  Tosio Kato Perturbation theory for linear operators , 1966 .