Oblique dual frames and shift-invariant spaces
暂无分享,去创建一个
[1] Yonina C. Eldar,et al. General Framework for Consistent Sampling in Hilbert Spaces , 2005, Int. J. Wavelets Multiresolution Inf. Process..
[2] Yonina C. Eldar. Sampling Without Input Constraints: Consistent Reconstruction in Arbitrary Spaces , 2004 .
[3] Yonina C. Eldar. Sampling with Arbitrary Sampling and Reconstruction Spaces and Oblique Dual Frame Vectors , 2003 .
[4] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[5] A. Aldroubi. Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces , 2002 .
[6] H. Ogawa,et al. Pseudo-Duals of Frames with Applications , 2001 .
[7] Shidong Li,et al. A Theory of Generalized Multiresolution Structure and Pseudoframes of Translates , 2001 .
[8] Shidong Li. A Theory of Pseudoframes for Subspaces with Applications , 2001 .
[9] O. Christensen,et al. Perturbation of Frames for a Subspace of a Hilbert Space , 2000 .
[10] O. Christensen,et al. Density of Gabor Frames , 1999 .
[11] Wai-Shing Tang,et al. Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces , 1999 .
[12] J. Benedetto,et al. The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .
[13] Shidong Li,et al. On general frame decompositions , 1995 .
[14] B. Torrésani,et al. Wavelets: Mathematics and Applications , 1994 .
[15] R. DeVore,et al. Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .
[16] R. DeVore,et al. Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .
[17] Tosio Kato. Perturbation theory for linear operators , 1966 .