Modification of eutectic structure and halo by addition of immiscible element in Fe-based dendrite-reinforced eutectic composites

[1]  G. Eggeler,et al.  Bulk and Surface Low Temperature Phase Transitions in the Mg-Alloy EZ33A , 2020, Metals.

[2]  C. Kübel,et al.  Strengthening zones in the Co matrix of WC-Co cemented carbides , 2014 .

[3]  J. Eckert,et al.  Multi-phase Al-based ultrafine composite with multi-scale microstructure , 2010 .

[4]  J. Eckert,et al.  FeCo-based multiphase composites with high strength and large plastic deformation , 2010 .

[5]  S. Yi,et al.  Sn effect on microstructure and mechanical properties of ultrafine eutectic Ti–Fe–Sn alloys , 2009 .

[6]  Kamanio Chattopadhyay,et al.  High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity , 2009 .

[7]  J. Eckert,et al.  Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni–Ta bulk glassy alloy via introducing the structural inhomogeneity , 2008 .

[8]  Won Tae Kim,et al.  Influence of heterogeneities with different length scale on the plasticity of Fe-base ultrafine eutectic alloys , 2008 .

[9]  Myung-Shin Lee,et al.  High strength ultrafine eutectic Fe–Nb–Al composites with enhanced plasticity , 2008 .

[10]  R. Trivedi,et al.  Eutectic growth: A modification of the Jackson and Hunt theory , 1991 .

[11]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .

[12]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[13]  M. Gigliotti,et al.  Correction “halo formation in eutectic alloy systems”—discussion section , 1970 .