Microstructured KY(WO(4))(2):Gd(3+), Lu(3+), Yb(3+) channel waveguide laser.

Epitaxially grown, 2.4-microm-thin layers of KY(WO(4))(2):Gd(3+), Lu(3+), Yb(3+), which exhibit a high refractive index contrast with respect to the undoped KY(WO(4))(2) substrate, have been microstructured by Ar beam milling, providing 1.4-microm-deep ridge channel waveguides of 2 to 7 microm width, and overgrown by an undoped KY(WO(4))(2) layer. Channel waveguide laser operation was achieved with a launched pump power threshold of only 5 mW, a slope efficiency of 62% versus launched pump power, and 76 mW output power.

[1]  O. Hellmig,et al.  Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing , 2010 .

[2]  W Sibbett,et al.  Continuous-wave and Q-switched operation of a compact, diode-pumped Yb3+:KY(WO4)2 planar waveguide laser. , 2009, Optics express.

[3]  Markus Pollnau,et al.  Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2). , 2007, Optics letters.

[4]  J. S. Aitchison,et al.  Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser , 2008 .

[5]  H. Dötsch,et al.  Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength , 1999 .

[6]  Valentin Petrov,et al.  Yb-doped KY(WO4)2 planar waveguide laser. , 2006, Optics letters.

[7]  Aurelian Crunteanu,et al.  Performance of Ar/sup +/-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources , 2003 .

[8]  Xavier Mateos,et al.  Epitaxial Growth of Lattice Matched KY1−x−yGdxLuy(WO4)2 Thin Films on KY(WO4)2 Substrates for Waveguiding Applications , 2009 .

[9]  Edward H. Bernhardi,et al.  Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers , 2009 .

[10]  U. Griebner,et al.  Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide. , 1999, Optics letters.

[11]  S. Field,et al.  Ion-implanted Nd:GGG channel waveguide laser. , 1992, Optics letters.

[12]  F. Gardillou,et al.  Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation , 2007 .

[13]  M. Pollnau,et al.  Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  A. Lagatsky,et al.  Diode-pumped CW lasing of Yb:KYW and Yb:KGW , 1999 .

[15]  T. Jensen,et al.  CW laser performance of Yb and Er,Yb doped tungstates , 1997 .

[16]  Markus Pollnau,et al.  Low-temperature liquid-phase epitaxy and optical waveguiding of rare-earth-ion-doped KY(WO4)2 thin layers , 2004 .

[17]  W Sibbett,et al.  Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers. , 2009, Optics express.

[18]  Valentin Petrov,et al.  Potassium Ytterbium Tungstate Provides the Smallest Laser Quantum Defect , 2003 .

[19]  U. Griebner,et al.  Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO 4 ) 2 , 2002 .

[20]  Xavier Mateos,et al.  Thin-disk Yb:KLu(WO(4))(2) laser with single-pass pumping. , 2008, Optics letters.

[21]  Magdalena Aguiló,et al.  Growth of β-KGd1 − xNdx(WO4)2 single crystals in K2W2O7 solvents , 1996 .

[22]  Daniel Jaque,et al.  Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides , 2008 .