Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO2 for ultrasensitive detection of fumonisin B1.

[1]  Xiuhua Zhang,et al.  Visual multiple recognition of protein biomarkers based on an array of aptamer modified gold nanoparticles in biocomputing to strip biosensor logic operations. , 2016, Biosensors & bioelectronics.

[2]  K. Zarei,et al.  Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer. , 2016, Talanta.

[3]  Bingzhi Li,et al.  Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione. , 2015, Analytica chimica acta.

[4]  Longhua Guo,et al.  Surface-Enhanced Electrochemiluminescence of Ru@SiO2 for Ultrasensitive Detection of Carcinoembryonic Antigen. , 2015, Analytical chemistry.

[5]  Longhua Guo,et al.  Surface Enhanced Electrochemiluminescence for Ultrasensitive Detection of Hg2 , 2014 .

[6]  Dik-Lung Ma,et al.  Group 9 organometallic compounds for therapeutic and bioanalytical applications. , 2014, Accounts of chemical research.

[7]  Feng Xiaobin,et al.  A novel dual-template molecularly imprinted electrochemiluminescence immunosensor array using Ru(bpy)32+-Silica@Poly-L-lysine-Au composite nanoparticles as labels for near-simultaneous detection of tumor markers , 2014 .

[8]  Yu-Chen Wang,et al.  An immunomagnetic-bead-based enzyme-linked immunosorbent assay for sensitive quantification of fumonisin B1 , 2014 .

[9]  H. Ju,et al.  Design and biosensing of Mg²⁺-dependent DNAzyme-triggered ratiometric electrochemiluminescence. , 2014, Analytical chemistry.

[10]  Hongyuan Chen,et al.  RuSi@Ru(bpy)3(2+)/Au@Ag2S nanoparticles electrochemiluminescence resonance energy transfer system for sensitive DNA detection. , 2014, Analytical chemistry.

[11]  Xing Li,et al.  A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. , 2014, Biosensors & bioelectronics.

[12]  Dan Wu,et al.  Ultrasensitive electrochemiluminescence immunosensor based on Ru(bpy)32+ and Ag nanoparticles doped SBA-15 for detection of cancer antigen 15-3 , 2013 .

[13]  Nengqin Jia,et al.  A novel solid-state electrochemiluminescence sensor for melamine with Ru(bpy)3(2+)/mesoporous silica nanospheres/Nafion composite modified electrode. , 2013, Biosensors & bioelectronics.

[14]  Xiaoli Zhang,et al.  Electrogenerated chemiluminescence sensor for formaldehyde based on Ru(bpy)32+-doped silica nanoparticles modified Au electrode , 2012 .

[15]  Jianping Li,et al.  Molecularly imprinted electrochemical luminescence sensor based on signal amplification for selective determination of trace gibberellin A3. , 2012, Analytical chemistry.

[16]  Jianping Li,et al.  Molecularly Imprinted Electrochemical Luminescence Sensor Based on Enzymatic Amplification for Ultratrace Isoproturon Determination , 2012 .

[17]  J. Rusling,et al.  Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. , 2011, Analytical chemistry.

[18]  Yiping Ren,et al.  Simultaneous determination of fumonisins B1, B2 and B3 contaminants in maize by ultra high-performance liquid chromatography tandem mass spectrometry. , 2011, Analytica chimica acta.

[19]  Songqin Liu,et al.  Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)(3)(2+)-encapsulated silica nanosphere labels. , 2010, Analytica chimica acta.

[20]  E. Zironi,et al.  Determination of fumonisin B1 in bovine milk by LC–MS/MS , 2009 .

[21]  Ettore Marzocchi,et al.  Ru(bpy)(3) covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification. , 2009, Journal of the American Chemical Society.

[22]  J. Ezquerra‐Brauer,et al.  Role of fumonisin B1 on the immune system, histopathology, and muscle proteins of white shrimp (Litopenaeus vannamei). , 2008, Food chemistry.

[23]  Dana D. Dlott,et al.  Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering , 2008, Science.

[24]  W. Miao Electrogenerated chemiluminescence and its biorelated applications. , 2008, Chemical reviews.

[25]  E. Fort,et al.  Surface enhanced fluorescence , 2008 .

[26]  Zhu Chang,et al.  Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement. , 2007, Analytica chimica acta.

[27]  Arben Merkoçi,et al.  Double-codified gold nanolabels for enhanced immunoanalysis. , 2007, Analytical chemistry.

[28]  P. Ran,et al.  Impedance sensing of allergen-antibody interaction on glassy carbon electrode modified by gold electrodeposition. , 2007, Bioelectrochemistry.

[29]  J. Haginaka,et al.  Uniformly-sized, molecularly imprinted polymers for nicotine by precipitation polymerization. , 2006, Journal of chromatography. A.

[30]  Shaojun Dong,et al.  Electrogenerated chemiluminescence biosensor based on Ru(bpy)3(2+) and dehydrogenase immobilized in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) composite material. , 2006, Analytica chimica acta.

[31]  T. Nann,et al.  Single Quantum Dots in Silica Spheres by Microemulsion Synthesis , 2005 .

[32]  Hongyuan Chen,et al.  Electrochemical study of a new methylene blue/silicon oxide nanocomposition mediator and its application for stable biosensor of hydrogen peroxide. , 2005, Biosensors & bioelectronics.

[33]  E. Zironi,et al.  Simple method for the simultaneous isolation and determination of fumonisin B1 and its metabolite aminopentol-1 in swine liver by liquid chromatography--fluorescence detection. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[34]  Yanbin Li,et al.  AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium-tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7. , 2005, Biosensors & bioelectronics.

[35]  Zhengdong Sun,et al.  Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer mediator for the determination of glucose in rat brain coupled to in vivo microdialysis , 2004 .

[36]  S. Dong,et al.  Electrochemical and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)(3)(2+) multilayer films on ITO electrodes. , 2004, The Analyst.

[37]  Shaojun Dong,et al.  Electrogenerated chemiluminescence from R(bpy)3(2+) ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. , 2004, Analytical chemistry.

[38]  Weihong Tan,et al.  Development of Organic‐Dye‐Doped Silica Nanoparticles in a Reverse Microemulsion , 2004 .

[39]  W. Knoll,et al.  Surface-plasmon fluorescence spectroscopy , 2002 .

[40]  John P. Rheeder,et al.  Production of Fumonisin Analogs by Fusarium Species , 2002, Applied and Environmental Microbiology.

[41]  W. Tan,et al.  Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. , 2001, Analytical chemistry.

[42]  A. Merrill,et al.  Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. , 2001, Environmental health perspectives.

[43]  D. Williams,et al.  Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. , 2001, Environmental health perspectives.

[44]  M. Yoshikawa,et al.  Molecularly imprinted polymeric membranes involving tetrapeptide EQKL derivatives as chiral-recognition sites toward amino acids , 1998 .

[45]  W. Marasas,et al.  Levels of fumonisins B1 and B2 in feeds associated with confirmed cases of equine leukoencephalomalacia , 1991 .