Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation

In this paper, we apply the interior penalty method analyzed in [E. Burman and M.--A. Fernndez, Numer. Math. 107 (2007), no. 1, 39--77; MR2317827 (2008c:65317)] to flows at high Reynolds number. As a possible measure of solution quality we propose to monitor the ratio between the artificial dissipation induced by the numerical method and the computed physical dissipation. For smooth flows we prove that for our method the artificial dissipation serves as an a posteriori error estimator and also that it vanishes at an optimal rate. In the case of flows with multiscale features, we discuss a heuristic approach relating the decay of the artificial dissipation to the decay rate of the power spectrum. Some numerical results in two space dimensions are presented examining the relation between the numerical dissipation and solution quality.

[1]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[2]  S. Scott Collis,et al.  The DG/VMS Method for Unified Turbulence Simulation , 2002 .

[3]  Erik Burman,et al.  A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty , 2005, SIAM J. Numer. Anal..

[4]  W. Layton,et al.  A connection between subgrid scale eddy viscosity and mixed methods , 2002, Appl. Math. Comput..

[5]  Peter Hansbo,et al.  A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .

[6]  Béatrice Rivière,et al.  A Discontinuous Subgrid Eddy Viscosity Method for the Time-Dependent Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[7]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[8]  Volker John An assessment of two models for the subgrid scale tensor in the rational LES model , 2005 .

[9]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2004 – 06 A stabilized nonconforming finite element method for incompressible flow , 2007 .

[10]  An Interior Penalty Variational Multiscale Method for High Reynolds Number Flows , 2006 .

[11]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[12]  Marcel Lesieur,et al.  The mixing layer and its coherence examined from the point of view of two-dimensional turbulence , 1988, Journal of Fluid Mechanics.

[13]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[14]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[15]  William Layton,et al.  Weak imposition of “no-slip” conditions in finite element methods , 1999 .

[16]  Johan Hoffman,et al.  Adaptive finite element methods for incompressible fluid flow , 2001 .

[17]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[18]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[19]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[20]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[21]  Ekkehard Ramm,et al.  Large eddy simulation of turbulent incompressible flows by a three‐level finite element method , 2005 .

[22]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[23]  Roland Becker,et al.  Mesh adaptation for Dirichlet flow control via Nitsche's method , 2002 .

[24]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[25]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[26]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[27]  Miguel A. Fernández,et al.  Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.

[28]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[29]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[30]  Erik Burman,et al.  Adaptive finite element methods for compressible flow , 2000 .

[31]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[32]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[33]  W. Layton,et al.  Approximating local averages of fluid velocities: the equilibrium Navier-Stokes equations , 2004 .

[34]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[35]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[36]  Mats Boman Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm , 2006 .

[37]  Rolf Stenberg,et al.  Numerical Mathematics and Advanced Applications ENUMATH 2017 , 2019, Lecture Notes in Computational Science and Engineering.

[38]  A. Kolmogorov Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers , 1967, Uspekhi Fizicheskih Nauk.

[39]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .