Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation
暂无分享,去创建一个
[1] R. Kraichnan. Inertial Ranges in Two‐Dimensional Turbulence , 1967 .
[2] S. Scott Collis,et al. The DG/VMS Method for Unified Turbulence Simulation , 2002 .
[3] Erik Burman,et al. A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty , 2005, SIAM J. Numer. Anal..
[4] W. Layton,et al. A connection between subgrid scale eddy viscosity and mixed methods , 2002, Appl. Math. Comput..
[5] Peter Hansbo,et al. A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .
[6] Béatrice Rivière,et al. A Discontinuous Subgrid Eddy Viscosity Method for the Time-Dependent Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..
[7] Alexandre Ern,et al. Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..
[8] Volker John. An assessment of two models for the subgrid scale tensor in the rational LES model , 2005 .
[9] P. Hansbo,et al. CHALMERS FINITE ELEMENT CENTER Preprint 2004 – 06 A stabilized nonconforming finite element method for incompressible flow , 2007 .
[10] An Interior Penalty Variational Multiscale Method for High Reynolds Number Flows , 2006 .
[11] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[12] Marcel Lesieur,et al. The mixing layer and its coherence examined from the point of view of two-dimensional turbulence , 1988, Journal of Fluid Mechanics.
[13] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[14] P. Hansbo,et al. Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .
[15] William Layton,et al. Weak imposition of “no-slip” conditions in finite element methods , 1999 .
[16] Johan Hoffman,et al. Adaptive finite element methods for incompressible fluid flow , 2001 .
[17] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[18] Claes Johnson,et al. Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .
[19] Erik Burman,et al. Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..
[20] R. Codina. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .
[21] Ekkehard Ramm,et al. Large eddy simulation of turbulent incompressible flows by a three‐level finite element method , 2005 .
[22] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[23] Roland Becker,et al. Mesh adaptation for Dirichlet flow control via Nitsche's method , 2002 .
[24] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .
[25] Peter Hansbo,et al. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .
[26] Alessandro Russo,et al. CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .
[27] Miguel A. Fernández,et al. Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.
[28] Thomas J. R. Hughes,et al. Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .
[29] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[30] Erik Burman,et al. Adaptive finite element methods for compressible flow , 2000 .
[31] J. Lions,et al. Problèmes aux limites non homogènes et applications , 1968 .
[32] Miguel A. Fernández,et al. Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..
[33] W. Layton,et al. Approximating local averages of fluid velocities: the equilibrium Navier-Stokes equations , 2004 .
[34] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[35] T. Hughes,et al. Large Eddy Simulation and the variational multiscale method , 2000 .
[36] Mats Boman. Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm , 2006 .
[37] Rolf Stenberg,et al. Numerical Mathematics and Advanced Applications ENUMATH 2017 , 2019, Lecture Notes in Computational Science and Engineering.
[38] A. Kolmogorov. Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers , 1967, Uspekhi Fizicheskih Nauk.
[39] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .