은닉 마코프 랜덤 모델 기반의 전달 맵을 이용한 안개 제거

본 논문에서는 한 장의 영상에서 안개를 제거하는 알고리즘을 제안한다. 기존의 Dark Channel Prior(DCP) 알고리즘은 영상의 어두운 정보를 계산하여 전달량을 추정한 후, 매팅(matting) 기법을 사용하여 안개 영역을 보완하여 검출한다. 이 과정에서 블록현상이 발생하는 문제가 있으며 이로 인해 안개를 효율적으로 제거하는데 한계점이 있다. 이 문제를 해결하기 위해 본 논문에서는 Hidden Markov Random Field(HMRF) 와 Expectation-Maximization(EM) 알고리즘을 이용하여 매팅 과정에서 발생하는 블록문제를 해결하고자 하였다. 실험 결과를 통하여 제안한 방법은 기존 방법보다 안개제거에서 더 향상된 결과를 얻을 수 있음을 확인하였다.