A ‘Build and Retrieve’ methodology to simultaneously solve cryo-EM structures of membrane proteins

[1]  Wei Huang,et al.  Cryo-electron Microscopy Structure of the Acinetobacter baumannii 70S Ribosome and Implications for New Antibiotic Development , 2020, mBio.

[2]  R. Read,et al.  Improvement of cryo-EM maps by density modification , 2019, Nature Methods.

[3]  Z. Zhou,et al.  Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu , 2019, Nature Methods.

[4]  G. Lander,et al.  High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM , 2019, Nature Communications.

[5]  H. Stahlberg,et al.  Microfluidic protein isolation and sample preparation for high-resolution cryo-EM , 2019, Proceedings of the National Academy of Sciences.

[6]  David W. Taylor,et al.  Electron microscopy snapshots of single particles from single cells , 2018, The Journal of Biological Chemistry.

[7]  S. Matthews,et al.  Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry , 2018, Science.

[8]  Daniel E. Goldberg,et al.  Malaria Parasite Translocon Structure and Mechanism of Effector Export , 2018, Nature.

[9]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[10]  P. Bork,et al.  Capturing protein communities by structural proteomics in a thermophilic eukaryote , 2017, Molecular systems biology.

[11]  R. Gennis,et al.  Location of the Substrate Binding Site of the Cytochrome bo3 Ubiquinol Oxidase from Escherichia coli. , 2017, Journal of the American Chemical Society.

[12]  Nitin Kumar,et al.  Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN , 2017, Proceedings of the National Academy of Sciences.

[13]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[14]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[15]  Richard Henderson,et al.  Single particle electron cryomicroscopy: trends, issues and future perspective , 2016, Quarterly Reviews of Biophysics.

[16]  E. Wagar Bioterrorism and the Role of the Clinical Microbiology Laboratory , 2015, Clinical Microbiology Reviews.

[17]  Erik G Marklund,et al.  Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. , 2015, Analytical chemistry.

[18]  G. Palacios,et al.  Whole-Genome Assemblies of 56 Burkholderia Species , 2014, Genome Announcements.

[19]  D. Newman,et al.  Fosmidomycin Decreases Membrane Hopanoids and Potentiates the Effects of Colistin on Burkholderia multivorans Clinical Isolates , 2014, Antimicrobial Agents and Chemotherapy.

[20]  H. Schweizer Mechanisms of antibiotic resistance in Burkholderia pseudomallei: implications for treatment of melioidosis. , 2012, Future microbiology.

[21]  Renato J. Alves,et al.  The superfamily of heme-copper oxygen reductases: types and evolutionary considerations. , 2012, Biochimica et biophysica acta.

[22]  D. Speert,et al.  Identification of Hopanoid Biosynthesis Genes Involved in Polymyxin Resistance in Burkholderia multivorans , 2011, Antimicrobial Agents and Chemotherapy.

[23]  Maureen L. Coleman,et al.  The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1 , 2011, Proceedings of the National Academy of Sciences.

[24]  R. Gennis,et al.  The quinone-binding sites of the cytochrome bo3 ubiquinol oxidase from Escherichia coli. , 2010, Biochimica et biophysica acta.

[25]  R. Jernigan,et al.  Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport , 2010, Nature.

[26]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[27]  Paola Storici,et al.  Crystal structure of osmoporin OmpC from E. coli at 2.0 A. , 2006, Journal of molecular biology.

[28]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[29]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[30]  P. Loewen,et al.  Structure of the C-terminal domain of the catalase-peroxidase KatG from Escherichia coli. , 2004, Acta crystallographica. Section D, Biological crystallography.

[31]  O. White,et al.  Structural flexibility in the Burkholderia mallei genome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[33]  M. Grütter,et al.  Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase , 2003, The EMBO journal.

[34]  S. Iwata,et al.  Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation , 2003, Science.

[35]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[36]  A. Puustinen,et al.  The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site , 2000, Nature Structural Biology.

[37]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[38]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.