Immunoinformatics: Current trends and future directions

Immunoinformatics has recently emerged as a critical field for accelerating immunology research. Although still an evolving process, computational models now play instrumental roles, not only in directing the selection of key experiments, but also in the formulation of new testable hypotheses through detailed analysis of complex immunologic data that could not be achieved using traditional approaches alone. Immunomics, which combines traditional immunology with computer science, mathematics, chemistry, biochemistry, genomics and proteomics for the large-scale analysis of immune system function, offers new opportunities for future bench-to-bedside research. In this article, we review the latest trends and future directions of the field.

[1]  D. Flower,et al.  Benchmarking B cell epitope prediction: Underperformance of existing methods , 2005, Protein science : a publication of the Protein Society.

[2]  Marie-Paule Lefranc,et al.  IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis , 2008, Nucleic Acids Res..

[3]  N. Nagelkerke,et al.  An Integrative Bioinformatic Approach for Studying Escape Mutations in Human Immunodeficiency Virus Type 1 gag in the Pumwani Sex Worker Cohort , 2007, Journal of Virology.

[4]  Marie-Paule Lefranc,et al.  IMGT , the international ImMunoGeneTics information system , 2003 .

[5]  W. Dunsmuir,et al.  Syndromic Surveillance for Influenzalike Illness in Ambulatory Care Setting , 2004, Emerging infectious diseases.

[6]  Quentin Kaas,et al.  IG, TR and IgSF, MHC and MhcSF: what do we learn from the IMGT Colliers de Perles? , 2008, Briefings in functional genomics & proteomics.

[7]  Jérôme Lane,et al.  IMGT®, the international ImMunoGeneTics information system® , 2004, Nucleic Acids Res..

[8]  Gérard Lefranc,et al.  The Immunoglobulin FactsBook , 2001 .

[9]  Tin Wee Tan,et al.  Evolutionarily Conserved Protein Sequences of Influenza A Viruses, Avian and Human, as Vaccine Targets , 2007, PloS one.

[10]  O. Lund,et al.  NetMHCpan, a method for MHC class I binding prediction beyond humans , 2008, Immunogenetics.

[11]  Patrice Duroux,et al.  IMGT/LIGM-DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences , 2005, Nucleic Acids Res..

[12]  Julia G. Bodmer,et al.  IMGT/HLA Database--a sequence database for the human major histocompatibility complex. , 2001, Nucleic acids research.

[13]  Adriano Mari,et al.  Allergome—A database of allergenic molecules: Structure and data implementations of a web-based resource , 2005 .

[14]  Morten Nielsen,et al.  Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods , 2009, Bioinform..

[15]  P. Kloetzel,et al.  Modeling the MHC class I pathway by combining predictions of proteasomal cleavage,TAP transport and MHC class I binding , 2005, Cellular and Molecular Life Sciences CMLS.

[16]  Tin Wee Tan,et al.  Methods and protocols for prediction of immunogenic epitopes , 2006, Briefings Bioinform..

[17]  Gérard Lefranc,et al.  The T cell receptor factsbook , 2001 .

[18]  M. Chapman Allergen nomenclature. , 2020, Clinical allergy and immunology.

[19]  Steve Wilson,et al.  The Immune Epitope Database and Analysis Resource: From Vision to Blueprint , 2005, PLoS biology.

[20]  Marie-Paule Lefranc,et al.  Web Sites of Interest to Immunologists , 2006, Current protocols in immunology.

[21]  E Westhof,et al.  Predicting location of continuous epitopes in proteins from their primary structures. , 1991, Methods in enzymology.

[22]  Tin Wee Tan,et al.  Large-scale analysis of antigenic diversity of T-cell epitopes in dengue virus , 2006, BMC Bioinformatics.

[23]  S. Sarafianos,et al.  Molecular Modeling and Biochemical Characterization Reveal the Mechanism of Hepatitis B Virus Polymerase Resistance to Lamivudine (3TC) and Emtricitabine (FTC) , 2001, Journal of Virology.

[24]  A. Silvanovich,et al.  Bioinformatic Methods for Allergenicity Assessment Using a Comprehensive Allergen Database , 2002, International Archives of Allergy and Immunology.

[25]  Paul A. Bates,et al.  Global topological features of cancer proteins in the human interactome , 2006, Bioinform..

[26]  Werner Braun,et al.  SDAP: database and computational tools for allergenic proteins , 2003, Nucleic Acids Res..

[27]  P E Seiden,et al.  A model for simulating cognate recognition and response in the immune system. , 1992, Journal of theoretical biology.

[28]  J. Hammer,et al.  Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE. , 2004, Methods.

[29]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[30]  Qing Zhang,et al.  Automating document classification for the Immune Epitope Database , 2007, BMC Bioinformatics.

[31]  Rob J. De Boer,et al.  MHC polymorphism under host-pathogen coevolution , 2004, Immunogenetics.

[32]  Sean Martin,et al.  Advancing Cancer Systems Biology: Introducing the Center for the Development of a Virtual Tumor, CViT , 2007, Cancer informatics.

[33]  J. Tong,et al.  Methods and protocols for the assessment of protein allergenicity and cross-reactivity. , 2008, Frontiers in bioscience : a journal and virtual library.

[34]  James Lyons-Weiler Biomarker Development Study Publication Standards are Dead—Long Live Biomarker Development Study Publication Standards! , 2007, Cancer informatics.

[35]  S M Gendel,et al.  Sequence databases for assessing the potential allergenicity of proteins used in transgenic foods. , 1998, Advances in food and nutrition research.

[36]  R. Montañez,et al.  Information integration of protein-protein interactions as essential tools for immunomics. , 2006, Cellular immunology.

[37]  Arun Krishnan,et al.  Predicting allergenic proteins using wavelet transform , 2004, Bioinform..

[38]  O. Lund,et al.  Prediction of residues in discontinuous B‐cell epitopes using protein 3D structures , 2006, Protein science : a publication of the Protein Society.

[39]  Fabian Model,et al.  Feature selection for DNA methylation based cancer classification , 2001, ISMB.

[40]  K. Lun,et al.  Containing acute disease outbreak. , 2005, Methods of information in medicine.

[41]  K. R. Woods,et al.  Prediction of protein antigenic determinants from amino acid sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Gajendra P. S. Raghava,et al.  MHCBN: a comprehensive database of MHC binding and non-binding peptides , 2003, Bioinform..

[43]  J. Dopazo,et al.  Evidence for systems-level molecular mechanisms of tumorigenesis , 2007, BMC Genomics.

[44]  H. P. Hudson,et al.  An application of the theory of probabilities to the study of a priori pathometry.—Part I , 1917 .

[45]  Marie-Paule Lefranc,et al.  IMGT/3Dstructure-DB and IMGT/StructuralQuery, a database and a tool for immunoglobulin, T cell receptor and MHC structural data , 2004, Nucleic Acids Res..

[46]  Fernando Pereira,et al.  An automated procedure to identify biomedical articles that contain cancer‐associated gene variants , 2006, Human mutation.

[47]  Tin Wee Tan,et al.  Rule-based knowledge aggregation for large-scale protein sequence analysis of influenza A viruses , 2008, BMC Bioinformatics.

[48]  J. Bodmer,et al.  IMGT/HLA Database - a sequence database for the human major histocompatibility complex , 2000, Nucleic Acids Res..

[49]  M. Cancro,et al.  Screening of alternative models for transitional B cell maturation. , 2004, International immunology.

[50]  Avner Schlessinger,et al.  Towards a consensus on datasets and evaluation metrics for developing B‐cell epitope prediction tools , 2007, Journal of molecular recognition : JMR.

[51]  Salvatore Musumeci,et al.  Modeling immune system control of atherogenesis , 2008, Bioinform..

[52]  David C. Nickle,et al.  ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user's datasets , 2007, Bioinform..

[53]  Channa K. Hattotuwagama,et al.  AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data , 2005, Immunome research.

[54]  S. Blount,et al.  Lead Visual Information Specialist , 2003 .

[55]  Avner Schlessinger,et al.  Epitome: database of structure-inferred antigenic epitopes , 2005, Nucleic Acids Res..

[56]  Yan Zhang,et al.  CanPredict: a computational tool for predicting cancer-associated missense mutations , 2007, Nucleic Acids Res..

[57]  Mats G. Gustafsson,et al.  Prediction of food protein allergenicity: a bioinformatic learning systems approach , 2002, Silico Biol..

[58]  H. P. Hudson,et al.  An Application of the Theory of Probabilities to the Study of a Priori Pathometry.--Part III , 1917 .

[59]  Sudipto Saha,et al.  Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network , 2006, Proteins.

[60]  P. Laird,et al.  CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer , 2006, Nature Genetics.

[61]  Tin Wee Tan,et al.  Supporting the Curation of Biological Databases with Reusable Text Mining , 2005 .