Quark and lepton flavors with common modulus $\tau$ in $A_4$ modular symmetry

We study quark and lepton mass matrices with the common modulus $\tau$ in the $A_4$ modular symmetry. The viable quark mass matrices are composed of modular forms of weights $2$, $4$ and $6$. It is remarked that the modulus $\tau$ is close to $i$, which is a fixed point in the fundamental region of SL$(2,Z)$, and the CP symmetry is not violated. Indeed, the observed CP violation is reproduced at $\tau$ which is deviated a little bit from $\tau=i$. The charged lepton mass matrix is also given by using modular forms of weights $2$, $4$ and $6$, where five cases have been examined. The neutrino mass matrix is generated in terms of the modular forms of weight $4$ through the Weinberg operator. Lepton mass matrices are also consistent with the observed mixing angles at $\tau$ close to $i$ for NH of neutrino masses. Allowed regions of $\tau$ of quarks and leptons overlap each other for all cases of the charged lepton mass matrix. However, the sum of neutrino masses is crucial to test the common $\tau$ for quarks and leptons. The minimal sum of neutrino masses $\sum m_i$ is $140$meV at the common $\tau$. The inverted hierarchy of neutrino masses is unfavorable in our framework. It is emphasized that our result suggests the residual symmetry $\mathbb{Z}_2^{S}=\{ I, S \}$ in the quark and lepton mass matrices.

[1]  H. Okada,et al.  An inverse seesaw model with A4-modular symmetry , 2019, Nuclear Physics B.

[2]  S. King,et al.  Modular invariant models of leptons at level 7 , 2020, Journal of High Energy Physics.

[3]  H. Nilles,et al.  Lessons from eclectic flavor symmetries , 2020, 2004.05200.

[4]  Tatsuo C. Kobayashi,et al.  Challenge for spontaneous CP violation in Type IIB orientifolds with fluxes , 2020, 2004.04518.

[5]  Gui-Jun Ding,et al.  Testing moduli and flavon dynamics with neutrino oscillations , 2020, Journal of High Energy Physics.

[6]  H. Okada,et al.  Dirac dark matter in a radiative neutrino model , 2020, 2003.11396.

[7]  J. Valle,et al.  Predictions from warped flavor dynamics based on the T′ family group , 2020, Physical Review D.

[8]  M. Abbas Fermion masses and mixing in modular A4 Symmetry , 2020 .

[9]  S. King,et al.  Fermion mass hierarchies from modular symmetry , 2020, Journal of High Energy Physics.

[10]  Xiang-Gan Liu,et al.  Modular symmetry origin of texture zeros and quark-lepton unification , 2019, Physical Review D.

[11]  Tatsuo C. Kobayashi,et al.  Type II seesaw models with modular A4 symmetry , 2019, 1912.00637.

[12]  Tatsuo C. Kobayashi,et al.  CP violation in modular invariant flavor models , 2019, Physical Review D.

[13]  Shun Zhou,et al.  The minimal seesaw model with a modular S4 symmetry , 2019, Journal of High Energy Physics.

[14]  Di Zhang A modular A4 symmetry realization of two-zero textures of the Majorana neutrino mass matrix , 2019, Nuclear Physics B.

[15]  Mu-Chun Chen,et al.  A note on the predictions of models with modular flavor symmetries , 2019, Physics Letters B.

[16]  T. Asaka,et al.  Modular A4 invariance and leptogenesis , 2019, Journal of High Energy Physics.

[17]  J. C. Criado,et al.  Modular invariant models of lepton masses at levels 4 and 5 , 2019, Journal of High Energy Physics.

[18]  Oleg Popov,et al.  A modular A4 symmetric scotogenic model , 2019, Physics Letters B.

[19]  Tatsuo C. Kobayashi,et al.  Modular $S_3$ invariant flavor model in SU(5) GUT , 2019, 1906.10341.

[20]  Xin Wang Lepton flavor mixing and CP violation in the minimal type-(I+II) seesaw model with a modular A4 symmetry , 2019, Nuclear Physics B.

[21]  F. Feruglio,et al.  Neutrino Flavour Symmetries , 2019, 1912.06028.

[22]  S. King,et al.  Modular S4 and A4 symmetries and their fixed points: new predictive examples of lepton mixing , 2019, Journal of High Energy Physics.

[23]  Tatsuo C. Kobayashi,et al.  A4 lepton flavor model and modulus stabilization from S4 modular symmetry , 2019, Physical Review D.

[24]  H. Okada,et al.  Neutrino mass model with a modular $S_4$ symmetry , 2019, 1908.08409.

[25]  H. Okada,et al.  A radiative seesaw model in modular $A_4$ symmetry , 2019, 2003.13219.

[26]  S. King,et al.  Modular A4 symmetry models of neutrinos and charged leptons , 2019, Journal of High Energy Physics.

[27]  H. Okada,et al.  Modular S3 symmetric radiative seesaw model , 2019, Physical Review D.

[28]  Xiang-Gan Liu,et al.  Neutrino masses and mixing from double covering of finite modular groups , 2019, Journal of High Energy Physics.

[29]  H. Okada,et al.  A two loop induced neutrino mass model with modular A4 symmetry , 2019, 1906.03927.

[30]  M. Tanimoto,et al.  Towards unification of quark and lepton flavors in A4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_4$$\end{documen , 2019, The European Physical Journal C.

[31]  Tatsuo C. Kobayashi,et al.  Modular symmetry anomaly in magnetic flux compactification , 2019, Physical Review D.

[32]  H. Okada,et al.  A modular A4 symmetric model of dark matter and neutrino , 2019, Physics Letters B.

[33]  S. King,et al.  Neutrino mass and mixing with A5 modular symmetry , 2019, Physical Review D.

[34]  Tatsuo C. Kobayashi,et al.  Finite modular subgroups for fermion mass matrices and baryon/lepton number violation , 2018, Physics Letters B.

[35]  M. Tanimoto,et al.  CP violation of quarks in A4 modular invariance , 2018, Physics Letters B.

[36]  Tatsuo C. Kobayashi,et al.  Modular forms of finite modular subgroups from magnetized D-brane models , 2018, Physical Review D.

[37]  S. Petcov,et al.  Lepton masses and mixing from modular S4 symmetry , 2018, Nuclear Physics B.

[38]  Tatsuo C. Kobayashi,et al.  Modular A4 invariance and neutrino mixing , 2018, Journal of High Energy Physics.

[39]  J. C. Criado,et al.  Modular invariance faces precision neutrino data , 2018, SciPost Physics.

[40]  Y. Shimizu,et al.  Revisiting the A4 model for leptons in light of NuFIT 3.2 , 2018, Progress of Theoretical and Experimental Physics.

[41]  Tatsuo C. Kobayashi,et al.  Modular symmetry and non-Abelian discrete flavor symmetries in string compactification , 2018, Physical Review D.

[42]  S. Petcov,et al.  Assessing the viability of A4 , S4 , and A5 flavor symmetries for description of neutrino mixing , 2018, Physical Review D.

[43]  S. Petcov Discrete flavour symmetries, neutrino mixing and leptonic CP violation , 2017, The European Physical Journal C.

[44]  F. Feruglio Are neutrino masses modular forms? , 2017, From My Vast Repertoire ....

[45]  Tatsuo C. Kobayashi,et al.  Zero-modes on orbifolds : magnetized orbifold models by modular transformation , 2017, 1709.09784.

[46]  S. Ho,et al.  Unveiling $ν$ secrets with cosmological data: neutrino masses and mass hierarchy , 2017, 1701.08172.

[47]  S. King Unified models of neutrinos, flavour and CP Violation , 2017, 1701.04413.

[48]  S. Antusch,et al.  Running quark and lepton parameters at various scales , 2013, 1306.6879.

[49]  S. King,et al.  Neutrino mass and mixing with discrete symmetry , 2013, Reports on progress in physics. Physical Society.

[50]  A. Smirnov,et al.  Lepton mixing and discrete symmetries , 2012, 1204.0445.

[51]  Tatsuo C. Kobayashi,et al.  Non-Abelian Discrete Symmetries in Particle Physics , 2010, 1003.3552.

[52]  G. Altarelli,et al.  Discrete Flavor Symmetries and Models of Neutrino Mixing , 2010, 1002.0211.

[53]  J. Valle,et al.  Underlying A4 symmetry for the neutrino mass matrix and the quark mixing matrix , 2002, hep-ph/0206292.

[54]  E. Ma,et al.  Softly broken A(4) symmetry for nearly degenerate neutrino masses , 2001, hep-ph/0106291.

[55]  N. Koblitz Introduction to Elliptic Curves and Modular Forms , 1984 .

[56]  J. Lehner,et al.  Lectures on modular forms , 1962 .